Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The purpose of the present work was to analyze the effect of trehalose, arabic and guar gums on the preservation of β-galactosidase activity in freeze-dried and vacuum dried Ca(II)-alginate beads. Freezing process was also studied as a first step of freeze-drying. Trehalose was critical for β-galactosidase conservation, and guar gum as a second excipient showed the highest conservation effect (close to 95%). Systems with Tg values ~ 40 °C which were stables at ambient temperature were obtained, being trehalose the main responsible of the formation of an amorphous matrix. Vacuum dried beads showed smaller size (with Feret's diameter below 1.08 ± 0.09 mm), higher circularity (reaching 0.78 ± 0.06) and large cracks in their surface than freeze-dried beads, which were more spongy and voluminous. Ice crystallization of the beads revealed that the crystallization of Ca(II)-alginate system follows the Avrami kinetics of nucleation and growth. Particularly, Ca(II)-alginate showed an Avrami index of 2.03 ± 0.07, which means that crystal growing is bidimensional. Neither the addition of trehalose nor gums affected the dimension of the ice growing or its rate. These results open an opportunity in the development of new lactic products able to be consumed by lactose intolerance people. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:Encapsulation of lactase in Ca(II)-alginate beads: Effect of stabilizers and drying methods
Autor:Traffano-Schiffo, M.V.; Castro-Giraldez, M.; Fito, P.J.; Santagapita, P.R.
Filiación:Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universidad Politécnica de Valencia, Camino de Vera s/n, Valencia, 46022, Spain
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamentos de Industrias y Química Orgánica, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina
Palabras clave:Freeze-drying; Hydrogels; Microstructure; Stability; Vacuum drying; β-Galactosidase; Alginate; Calcium; Convergence of numerical methods; Growth kinetics; Hydrogels; Low temperature drying; Microstructure; Amorphous matrices; Avrami kinetics; Conservation effects; Freeze drying; Freezing process; Galactosidases; Ice crystallization; Vacuum drying; Drying
Año:2017
Volumen:100
Página de inicio:296
Página de fin:303
DOI: http://dx.doi.org/10.1016/j.foodres.2017.07.020
Título revista:Food Research International
Título revista abreviado:Food Res. Int.
ISSN:09639969
CODEN:FORIE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09639969_v100_n_p296_TraffanoSchiffo

Referencias:

  • Aguirre Calvo, T., Santagapita, P., Physicochemical characterization of alginate beads containing sugars and biopolymers (2016) Journal of Quality and Reliability Engineering, 2016
  • Aguirre Calvo, T.R., Busch, V.M., Santagapita, P.R., Stability and release of an encapsulated solvent-free lycopene extract in alginate-based beads (2017) LWT- Food Science and Technology, 77, pp. 406-412
  • Austin, L., Bower, J.J., Muldoon, C., The controlled release of leukaemia inhibitory factor (LIF) from gels (1996) Proceeding of the International Symposium on Controlled Release of Bioactive Materials, 23, pp. 739-740
  • Avrami, M., Kinetics of phase change. I general theory (1939) The Journal of Chemical Physics, 7 (12), pp. 1103-1112
  • Buera, M.P., Roos, Y., Levine, H., Slade, L., Corti, H.R., Reid, D.S., Angell, C.A., State diagrams for improving processing and storage of foods, biological materials, and pharmaceuticals (IUPAC Technical Report) (2011) Pure and Applied Chemistry, 83 (8), pp. 1567-1617
  • Buera, M.P., Schebor, C., Elizalde, B., Effects of carbohydrate crystallization on stability of dehydrated foods and ingredient formulations (2005) Journal of Food Engineering, 67 (1), pp. 157-165
  • Busch, V.M., Pereyra-Gonzalez, A., Šegatin, N., Santagapita, P.R., Ulrih, N.P., Buera, M.P., Propolis encapsulation by spray drying: Characterization and stability (2017) LWT- Food Science and Technology, 75, pp. 227-235
  • Dashevsky, A., Protein loss by the microencapsulation of an enzyme (lactase) in alginate beads (1998) International Journal of Pharmaceutics, 161 (1), pp. 1-5
  • De Santis, F., Pantani, R., Titomanlio, G., Nucleation and crystallization kinetics of poly (lactic acid) (2011) Thermochimica Acta, 522 (1), pp. 128-134
  • Dill, E.D., Folmer, J.C., Martin, J.D., Crystal growth simulations to establish physically relevant kinetic parameters from the empirical Kolmogorov–Johnson–Mehl–Avrami model (2013) Chemistry of Materials, 25 (20), pp. 3941-3951
  • Estevinho, B.N., Ramos, I., Rocha, F., Effect of the pH in the formation of β-galactosidase microparticles produced by a spray-drying process (2015) International Journal of Biological Macromolecules, 78, pp. 238-242
  • Furlán, L.T.R., Baracco, Y., Lecot, J., Zaritzky, N., Campderrós, M.E., Effect of sweetener combination and storage temperature on physicochemical properties of sucrose free white chocolate (2017) Food Chemistry, 229, pp. 610-620
  • Gedde, W.U., Crystallization kinetics (1995) Polymer physics, pp. 169-198. , U.W. Gedde Springer London
  • Grasmeijer, N., Stankovic, M., de Waard, H., Frijlink, H.W., Hinrichs, W.L., Unraveling protein stabilization mechanisms: Vitrification and water replacement in a glass transition temperature controlled system (2013) Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1834 (4), pp. 763-769
  • Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) Journal of Research of the National Bureau of Standards, 81 (1), pp. 89-96
  • Gryshkov, O., Pogozhykh, D., Hofmann, N., Mueller, T., Glasmacher, B., C-1009: Cryopreservation of monkey mesenchymal stem cells inside alginate 3D micro-spheres after a high voltage encapsulation (2014) Cryobiology, 69 (3), p. 514
  • He, X., Liu, Y., Li, H., Li, H., Single-stranded structure of alginate and its conformation evolvement after an interaction with calcium ions as revealed by electron microscopy (2016) RSC Advances, 6 (115), pp. 114779-114782
  • Heaney, R.P., Dairy intake, dietary adequacy, and lactose intolerance (2013) Advances in Nutrition: An International Review Journal, 4 (2), pp. 151-156
  • Johnson, W.A., Mehl, R.F., Reaction kinetics in processes of nucleation and growth (1939) Transactions of AIME, 135 (8), pp. 396-415
  • Katayama, D.S., Carpenter, J.F., Manning, M.C., Randolph, T.W., Setlow, P., Menard, K.P., Characterization of amorphous solids with weak glass transitions using high ramp rate differential scanning calorimetry (2008) Journal of Pharmaceutical Sciences, 97 (2), pp. 1013-1024
  • Kolmogorov, A.N., On the statistical theory of the crystallization of metals (1937) Bulletin of the Russian Academy of Science, 1, pp. 355-359
  • Lee, K.Y., Mooney, D.J., Alginate: Properties and biomedical applications (2012) Progress in Polymer Science, 37 (1), pp. 106-126
  • Levine, L.E., Lakshmi Narayan, K., Kelton, K.F., Finite size corrections for the Johnson–Mehl–Avrami–Kolmogorov equation (1997) Journal of Materials Research, 12, pp. 124-132
  • Mazzobre, M.F., Aguilera, J.M., Buera, M.P., Microscopy and calorimetry as complementary techniques to analyze sugar crystallization from amorphous systems (2003) Carbohydrate Research, 338 (6), pp. 541-548
  • Mazzobre, M.F., Longinotti, M.P., Corti, H.R., Buera, M.P., Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting (2002) Cryobiology, 43 (3), pp. 199-210
  • Mazzobre, M.F., Santagapita, P.R., Gutiérrez, N., Buera, M.P., Consequences of matrix structural changes on functional stability of enzymes as affected by electrolytes (2008) Food engineering: Integrated approaches, pp. 73-87. , G. Gutiérrez-López G. Barbosa-Cánovas J. Welti-Chanes E. Parada-Arias Springer New York
  • Misselwitz, B., Pohl, D., Frühauf, H., Fried, M., Vavricka, S.R., Fox, M., Lactose malabsorption and intolerance: Pathogenesis, diagnosis and treatment (2013) United European Gastroenterology Journal, 1 (3), pp. 151-159
  • Nussinovitch, A., Hydrocolloid applications: Gum technology in the food and other industries (1997) Alginates, pp. 19-39. , A. Nussinovitch Chapman & Hall London
  • Park, Y.K., Santi, M.S.S., Pastore, G.M., Production and characterization of β-galactosidase from Aspergillus oryzae (1979) Journal of Food Science, 44 (1), pp. 100-103
  • Santagapita, P.R., Buera, M.P., Electrolyte effects on amorphous and supercooled sugar systems (2008) Journal of Non-Crystalline Solids, 354 (15), pp. 1760-1767
  • Santagapita, P.R., Buera, M.P., Trehalose–water–salt interactions related to the stability of β-galactosidase in supercooled media (2008) Food Biophysics, 3 (1), pp. 87-93
  • Santagapita, P.R., Mazzobre, M.F., Buera, M.P., Formulation and drying of alginate beads for controlled release and stabilization of invertase (2011) Biomacromolecules, 12 (9), pp. 3147-3155
  • Santagapita, P.R., Mazzobre, M.F., Buera, M.P., Invertase stability in alginate beads: Effect of trehalose and chitosan inclusion and of drying methods (2012) Food Research International, 47 (2), pp. 321-330
  • Sen, P., Nath, A., Bhattacharjee, C., Chowdhury, R., Bhattacharya, P., Process engineering studies of free and micro-encapsulated β-galactosidase in batch and packed bed bioreactors for production of galactooligosaccharides (2014) Biochemical Engineering Journal, 90, pp. 59-72
  • Todinov, M.T., On some limitations of the Johnson–Mehl–Avrami–Kolmogorov equation (2000) Acta Materialia, 48, pp. 4217-4224
  • Traffano-Schiffo, M.V., Aguirre Calvo, T.R., Castro-Giraldez, M., Fito, P.J., Santagapita, P.R., Alginate beads containing lactase: Stability and microstructure (2017) Biomacromolecules, 18, pp. 1785-1792
  • Tsai, F.H., Chiang, P.Y., Kitamura, Y., Kokawa, M., Islam, M.Z., Producing liquid-core hydrogel beads by reverse spherification: Effect of secondary gelation on physical properties and release characteristics (2017) Food Hydrocolloids, 62, pp. 140-148
  • Vasile, F.E., Romero, A.M., Judis, M.A., Mazzobre, M.F., Prosopis alba exudate gum as excipient for improving fish oil stability in alginate–chitosan beads (2016) Food Chemistry, 190, pp. 1093-1101
  • Wahba, M.I., Treated calcium pectinate beads for the covalent immobilization of β-d-galactosidase (2016) International Journal of Biological Macromolecules, 91, pp. 877-886
  • Wu, Z., Wang, Z., Guan, B., Wang, X., Zhang, Y., Xiao, Y., Huo, Q., Improving the properties of β-galactosidase from Aspergillus oryzae via encapsulation in aggregated silica nanoparticles (2013) New Journal of Chemistry, 37 (11), pp. 3793-3797
  • Xu, Y., Petrik, N.G., Smith, R.S., Kay, B.D., Kimmel, G.A., Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K (2016) Proceedings of the National Academy of Sciences, 113 (52), pp. 14921-14925
  • Zeeb, B., Saberi, A.H., Weiss, J., McClements, D.J., Formation and characterization of filled hydrogel beads based on calcium alginate: Factors influencing nanoemulsion retention and release (2015) Food Hydrocolloids, 50, pp. 27-36
  • Zhang, Z., Zhang, R., McClements, D.J., Lactase (β-galactosidase) encapsulation in hydrogel beads with controlled internal pH microenvironments: Impact of bead characteristics on enzyme activity (2017) Food Hydrocolloids, 67, pp. 85-93
  • Zhang, Z., Zhang, R., Zou, L., McClements, D.J., Protein encapsulation in alginate hydrogel beads: Effect of pH on microgel stability, protein retention and protein release (2016) Food Hydrocolloids, 58, pp. 308-315

Citas:

---------- APA ----------
Traffano-Schiffo, M.V., Castro-Giraldez, M., Fito, P.J. & Santagapita, P.R. (2017) . Encapsulation of lactase in Ca(II)-alginate beads: Effect of stabilizers and drying methods. Food Research International, 100, 296-303.
http://dx.doi.org/10.1016/j.foodres.2017.07.020
---------- CHICAGO ----------
Traffano-Schiffo, M.V., Castro-Giraldez, M., Fito, P.J., Santagapita, P.R. "Encapsulation of lactase in Ca(II)-alginate beads: Effect of stabilizers and drying methods" . Food Research International 100 (2017) : 296-303.
http://dx.doi.org/10.1016/j.foodres.2017.07.020
---------- MLA ----------
Traffano-Schiffo, M.V., Castro-Giraldez, M., Fito, P.J., Santagapita, P.R. "Encapsulation of lactase in Ca(II)-alginate beads: Effect of stabilizers and drying methods" . Food Research International, vol. 100, 2017, pp. 296-303.
http://dx.doi.org/10.1016/j.foodres.2017.07.020
---------- VANCOUVER ----------
Traffano-Schiffo, M.V., Castro-Giraldez, M., Fito, P.J., Santagapita, P.R. Encapsulation of lactase in Ca(II)-alginate beads: Effect of stabilizers and drying methods. Food Res. Int. 2017;100:296-303.
http://dx.doi.org/10.1016/j.foodres.2017.07.020