Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The scope for developing the present numerical method was to perform parametric studies for optimization of several configurations in magnetized plasmas. Nowadays there exist several efficient numerical codes in the subject. However, the construction of one's own computational codes brings the following important advantages: (a) to get a deeper knowledge of the physical processes involved and the numerical methods used to simulate them and (b) more flexibility to adapt the code to particular situations in a more efficient way than would be possible for a closed general code. The code includes ion viscosity, thermal conduction (electrons and ions), magnetic diffusion, thermonuclear or chemical reaction, Bremsstrahlung radiation, and equation of state (from the ideal gas to the degenerate electron gas). After each calculation cycle, mesh vertices are moved arbitrarily over the fluid. The adaptive method consists of shifting mesh vertices over the fluid in order to keep a reasonable mesh structure and increase the spatial resolution where the physical solution demands. The code was a valuable tool for parametric study of different physical problems, mainly optimization of plasma focus machine, detonation and propagation of thermonuclear reactions and Kelvin-Helmholtz instabilities in the boundary layer of the terrestrial magnetopause. © 2010 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Dense magnetized plasma numerical simulations
Autor:Bilbao, L.; Bernal, L.
Filiación:INFIP-CONICET, Physics Department (FCEN-UBA), Ciudad Universitaria, Pab. I, 1428 Buenos Aires, Argentina
Physics Department (FCEYN-UNMDP), Complejo Universitario, Funes y Peña, 7600 Mar del Plata, Argentina
Palabras clave:Adaptive methods; Bremsstrahlung radiation; Computational codes; Degenerate electron gas; Dense magnetized plasma; Equation of state; Ideal gas; Ion viscosity; Kelvin-Helmholtz instabilities; Magnetic diffusion; Magnetized plasmas; Mesh structures; Mesh vertex; Numerical code; Numerical simulation; Parametric study; Physical process; Plasma Focus machines; Spatial resolution; Thermal conduction; Computer simulation; Electron gas; Equations of state of gases; Magnetoplasma; Magnetosphere; Number theory; Numerical methods; Optimization; Plasma diagnostics; Plasma stability
Año:2010
Volumen:19
Número:3
DOI: http://dx.doi.org/10.1088/0963-0252/19/3/034024
Título revista:Plasma Sources Science and Technology
Título revista abreviado:Plasma Sources Sci Technol
ISSN:09630252
CODEN:PSTEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09630252_v19_n3_p_Bilbao

Referencias:

  • Bilbao, L., (1990) J. Comput. Phys., 91 (2), p. 361
  • Bernal, L., Bilbao, L., (1998) Nuovo Cimento, 20, pp. 661-674
  • Potter, D.E., (1971) Phys. Fluids, 14 (9), pp. 1911-1924
  • Maxon, S., Eddleman, J., (1978) Phys. Fluids, 21 (10), pp. 1856-1865
  • Bilbao, L., Bruzzone, H., (1984) Phys. Lett., 101 (5-6), p. 261
  • Gourlan, C., Kroegler, H., Ch, M., Rager, J.P., Robouch, B., Bertalot, L., Gentilini, A., Steinmetz, K., (1978) Proc 2nd Int. Conf on Energy Storage Compression and Switching, p. 221. , (Venice, 5-8 December 1978) ed V Nardi, H Sahlin and W H Bostick (New York: Plenum)
  • Artsimovich, L.A., (1964) Controlled Thermonuclear Reactions, , (New York: Gordon and Breach)
  • Bakshaev Yu, L., (2000) Czech. J. Phys., 50 (S3), pp. 121-126
  • Batunin, A.V., Bulatoy, A.N., Vikharev, V.D., (1990) Fiz. Plasmy (Sov. Plasma Phys.), 16, pp. 1027-1035
  • Gol'Berg, S.M., Liberrnann, M.A., Velikovich, A.L., (1990) Plasma Phys. Control. Fusion, 32 (5), pp. 319-326
  • Ryutoy, D.D., Derzon, M.S., Matzen, M.K., (2000) Rev. Mod. Phys., 72 (1), pp. 167-223
  • Avrorin, E.N., (1984) Fiz. Plasmy, 10 (3), p. 514
  • Avrorin, E.N., (1984) Sov. J. Plasma Phys., 10, p. 298
  • Ch, M., (1965) Proc. 2nd IAEA Conf. on Plasma Physics and Controlled Nuclear Fusion Research, 2, p. 345. , (Culham, UK)
  • Bortolotti, A., (1994) Proc. 3rd Int Conf. on Dense Z-Pinches, 299, p. 372. , (London, 1993)
  • Degnan, J.H., (2001) IEEE Trans. Plasma Sci., 29 (1), p. 93
  • Bilbao, L., Linhart, J.G., (1996) Plasma Phys. Rep., 22, p. 457
  • Bosch, H.S., Hale, G.M., (1992) Nucl. Fusion, 32 (4), p. 611

Citas:

---------- APA ----------
Bilbao, L. & Bernal, L. (2010) . Dense magnetized plasma numerical simulations. Plasma Sources Science and Technology, 19(3).
http://dx.doi.org/10.1088/0963-0252/19/3/034024
---------- CHICAGO ----------
Bilbao, L., Bernal, L. "Dense magnetized plasma numerical simulations" . Plasma Sources Science and Technology 19, no. 3 (2010).
http://dx.doi.org/10.1088/0963-0252/19/3/034024
---------- MLA ----------
Bilbao, L., Bernal, L. "Dense magnetized plasma numerical simulations" . Plasma Sources Science and Technology, vol. 19, no. 3, 2010.
http://dx.doi.org/10.1088/0963-0252/19/3/034024
---------- VANCOUVER ----------
Bilbao, L., Bernal, L. Dense magnetized plasma numerical simulations. Plasma Sources Sci Technol. 2010;19(3).
http://dx.doi.org/10.1088/0963-0252/19/3/034024