Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Galectin-1 (Gal-1), an evolutionarily conserved β-galactoside-binding lectin, controls immune cell homeostasis and tempers acute and chronic inflammation by blunting proinflammatory cytokine synthesis, engaging T-cell apoptotic programs, promoting expansion of T regulatory (Treg) cells, and deactivating antigen-presenting cells. In addition, this lectin promotes angiogenesis by co-opting the vascular endothelial growth factor receptor (VEGFR) 2 signaling pathway. Since a coordinated network of immunomodulatory and proangiogenic mediators controls cardiac homeostasis, this lectin has been proposed to play a key hierarchical role in cardiac pathophysiology via glycan-dependent regulation of inflammatory responses. Here, we discuss the emerging roles of Gal-1 in cardiovascular diseases including acute myocardial infarction, heart failure, Chagas cardiomyopathy, pulmonary hypertension, and ischemic stroke, highlighting underlying anti-inflammatory mechanisms and therapeutic opportunities. Whereas Gal-1 administration emerges as a potential novel treatment option in acute myocardial infarction and ischemic stroke, Gal-1 blockade may contribute to attenuate pulmonary arterial hypertension. © 2018 Ignacio M. Seropian et al.

Registro:

Documento: Artículo
Título:Galectin-1 as an Emerging Mediator of Cardiovascular Inflammation: Mechanisms and Therapeutic Opportunities
Autor:Seropian, I.M.; González, G.E.; Maller, S.M.; Berrocal, D.H.; Abbate, A.; Rabinovich, G.A.
Filiación:Servicio de Hemodinamia y Cardiología Intervencionista, Instituto de Medicina Cardiovascular, Hospital Italiano de Buenos Aires, Buenos Aires, C1199, Argentina
Instituto de Biología y Medicina Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiopatología Cardiovascular, Departamento de Patología, Universidad de Buenos Aires, Buenos Aires, C1428, Argentina
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428, Argentina
Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, United States
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428, Argentina
Palabras clave:ecalectin; galectin; galectin 1; galectin 12; glycan; unclassified drug; vasculotropin receptor; galectin 1; vasculotropin A; acute heart infarction; antiinflammatory activity; atherosclerosis; brain ischemia; cell differentiation; cell expansion; cell survival; Chagas cardiomyopathy; cytokine production; heart failure; immunocompetent cell; mediator; pulmonary hypertension; regulatory T lymphocyte; Review; animal; homeostasis; human; inflammation; metabolism; physiology; Animals; Galectin 1; Homeostasis; Humans; Inflammation; T-Lymphocytes, Regulatory; Vascular Endothelial Growth Factor A
Año:2018
Volumen:2018
DOI: http://dx.doi.org/10.1155/2018/8696543
Título revista:Mediators of Inflammation
Título revista abreviado:Mediators Inflamm.
ISSN:09629351
CODEN:MNFLE
CAS:galectin 1, 258495-34-0; vasculotropin receptor, 301253-48-5; vasculotropin A, 489395-96-2; Galectin 1; Vascular Endothelial Growth Factor A
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09629351_v2018_n_p_Seropian

Referencias:

  • Cerliani, J.P., Blidner, A.G., Toscano, M.A., Croci, D.O., Rabinovich, G.A., Translating the 'sugar code' into immune and vascular signaling programs (2017) Trends in Biochemical Sciences, 42 (4), pp. 255-273
  • Méndez-Huergo, S.P., Blidner, A.G., Rabinovich, G.A., Galectins: Emerging regulatory checkpoints linking tumor immunity and angiogenesis (2017) Current Opinion in Immunology, 45, pp. 8-15
  • Toscano, M.A., Allo, V.C.M., Cutine, A.M., Rabinovich, G.A., Mariño, K.V., Untangling galectin-driven regulatory circuits in autoimmune inflammation (2018) Trends in Molecular Medicine, 24 (4), pp. 348-363
  • Brinchmann, M.F., Patel, D.M., Iversen, M.H., The role of galectins as modulators of metabolism and inflammation (2018) Mediators of Inflammation, 2018, 11p
  • Cedeno-Laurent, F., Dimitroff, C.J., Galectin-1 research in T cell immunity: Past, present and future (2012) Clinical Immunology, 142 (2), pp. 107-116
  • Smetana, K., Jr., André, S., Kaltner, H., Kopitz, J., Gabius, H.J., Context-dependent multifunctionality of galectin-1: A challenge for defining the lectin as therapeutic target (2013) Expert Opinion on Therapeutic Targets, 17 (4), pp. 379-392
  • Hoeven Der Van, N.W., Hollander, M.R., Yildirim, C., The emerging role of galectins in cardiovascular disease (2016) Vascular Pharmacology, 81, pp. 31-41
  • Meijers, W.C., Velde Der Van, A.R., Pascual-Figal, D.A., De Boer, R.A., Galectin-3 and post-myocardial infarction cardiac remodeling (2015) European Journal of Pharmacology, 763, pp. 115-121
  • Ilarregui, J.M., Bianco, G.A., Toscano, M.A., Rabinovich, G.A., The coming of age of galectins as immunomodulatory agents: Impact of these carbohydrate binding proteins in T cell physiology and chronic inflammatory disorders (2005) Annals of the Rheumatic Diseases, 64, pp. iv96-iv103
  • Rabinovich, G., Castagna, L., Landa, C., Riera, C.M., Sotomayor, C., Regulated expression of a 16-kd galectinlike protein in activated rat macrophages (1996) Journal of Leukocyte Biology, 59 (3), pp. 363-370
  • Cerliani, J.P., Stowell, S.R., Mascanfroni, I.D., Arthur, C.M., Cummings, R.D., Rabinovich, G.A., Expanding the universe of cytokines and pattern recognition receptors: Galectins and glycans in innate immunity (2011) Journal of Clinical Immunology, 31 (1), pp. 10-21
  • Fuertes, M.B., Molinero, L.L., Toscano, M.A., Regulated expression of galectin-1 during T-cell activation involves Lck and Fyn kinases and signaling through MEK1/ERK, p 38 MAP kinase and p70S6 kinase (2004) Molecular and Cellular Biochemistry, 267 (1-2), pp. 177-185
  • Garín, M.I., Chu, C.C., Golshayan, D., Cernuda-Morollón, E., Wait, R., Lechler, R.I., Galectin-1: A key effector of regulation mediated by CD4+CD25+ T cells (2007) Blood, 109 (5), pp. 2058-2065
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nature Immunology, 10 (9), pp. 981-991
  • Sundblad, V., Morosi, L.G., Geffner, J.R., Rabinovich, G.A., Galectin-1: A Jack-of-all-trades in the resolution of acute and chronic inflammation (2017) Journal of Immunology, 199 (11), pp. 3721-3730
  • Guardia, C.M., Caramelo, J.J., Trujillo, M., Structural basis of redox-dependent modulation of galectin-1 dynamics and function (2014) Glycobiology, 24 (5), pp. 428-441
  • Croci, D.O., Salatino, M., Rubinstein, N., Disrupting galectin-1 interactions with N-glycans suppresses hypoxiadriven angiogenesis and tumorigenesis in Kaposi's sarcoma (2012) The Journal of Experimental Medicine, 209 (11), pp. 1985-2000
  • Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156 (4), pp. 744-758
  • Seropian, I.M., Cerliani, J.P., Toldo, S., Galectin-1 controls cardiac inflammation and ventricular remodeling during acute myocardial infarction (2013) The American Journal of Pathology, 182 (1), pp. 29-40
  • Westman, P.C., Lipinski, M.J., Luger, D., Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction (2016) Journal of the American College of Cardiology, 67 (17), pp. 2050-2060
  • Velagaleti, R.S., Pencina, M.J., Murabito, J.M., Longterm trends in the incidence of heart failure after myocardial infarction (2008) Circulation, 118 (20), pp. 2057-2062
  • Ashraf, G.M., Rizvi, S., Naqvi, S., Purification, characterization, structural analysis and protein chemistry of a buffalo heart galectin-1 (2010) Amino Acids, 39 (5), pp. 1321-1332
  • Dias-Baruffi, M., Stowell, S.R., Song, S.C., Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle (2010) Glycobiology, 20 (5), pp. 507-520
  • Al-Salam, S., Hashmi, S., Galectin-1 in early acute myocardial infarction (2014) PLoS One, 9 (1)
  • Chen, B., Frangogiannis, N.G., Immune cells in repair of the infarcted myocardium (2017) Microcirculation, 24 (1)
  • Vandervelde, S., Van Amerongen, M.J., Tio, R.A., Petersen, A.H., Van Luyn, M.J.A., Harmsen, M.C., Increased inflammatory response and neovascularization in reperfused vs. Nonreperfused murine myocardial infarction (2006) Cardiovascular Pathology, 15 (2), pp. 83-90
  • Starossom, S.C., Mascanfroni, I.D., Imitola, J., Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration (2012) Immunity, 37 (2), pp. 249-263
  • Choo, E.H., Lee, J.H., Park, E.H., Infarcted myocardium-primed dendritic cells improve remodeling and cardiac function after myocardial infarction by modulating the regulatory T cell and macrophage polarization (2017) Circulation, 135 (15), pp. 1444-1457
  • Hulsmans, M., Sam, F., Nahrendorf, M., Monocyte and macrophage contributions to cardiac remodeling (2016) Journal of Molecular and Cellular Cardiology, 93, pp. 149-155
  • Rubinstein, N., Alvarez, M., Zwirner, N.W., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5 (3), pp. 241-251
  • Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nature Immunology, 8 (8), pp. 825-834
  • Cheng, X., Liao, Y.H., Ge, H., TH1/TH2 functional imbalance after acute myocardial infarction: Coronary arterial inflammation or myocardial inflammation (2005) Journal of Clinical Immunology, 25 (3), pp. 246-253
  • Lluberas, N., Trías, N., Brugnini, A., Lymphocyte subpopulations in myocardial infarction: A comparison between peripheral and intracoronary blood (2015) Springerplus, 4 (1), p. 744
  • Methe, H., Brunner, S., Wiegand, D., Nabauer, M., Koglin, J., Edelman, E.R., Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes (2005) Journal of the American College of Cardiology, 45 (12), pp. 1939-1945
  • Engelbertsen, D., Andersson, L., Ljungcrantz, I., T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke (2013) Arteriosclerosis, Thrombosis, and Vascular Biology, 33 (3), pp. 637-644
  • Wang, Y.P., Xie, Y., Ma, H., Regulatory T lymphocytes in myocardial infarction: A promising new therapeutic target (2016) International Journal of Cardiology, 203, pp. 923-928
  • Dalotto-Moreno, T., Croci, D.O., Cerliani, J.P., Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease (2013) Cancer Research, 73 (3), pp. 1107-1117
  • Carlos, C.P., Silva, A.A., Gil, C.D., Oliani, S.M., Pharmacological treatment with galectin-1 protects against renal ischaemia-reperfusion injury (2018) Scientific Reports, 8 (1), p. 9568
  • Thijssen, V.L., Barkan, B., Shoji, H., Tumor cells secrete galectin-1 to enhance endothelial cell activity (2010) Cancer Research, 70 (15), pp. 6216-6224
  • Libby, P., Ridker, P.M., Hansson, G.K., Inflammation in atherosclerosis: From pathophysiology to practice (2009) Journal of the American College of Cardiology, 54 (23), pp. 2129-2138. , and Leducq Transatlantic Network on Atherothrombosis
  • Ridker, P.M., Everett, B.M., Thuren, T., Antiinflammatory therapy with canakinumab for atherosclerotic disease (2017) The New England Journal of Medicine, 377 (12), pp. 1119-1131
  • Lee, Y.J., Koh, Y.S., Park, H.E., Spatial and temporal expression, and statin responsiveness of galectin-1 and galectin-3 in murine atherosclerosis (2013) The Korean Circulation Journal, 43 (4), pp. 223-230
  • MacKinnon, A.C., Liu, X., Hadoke, P.W., Miller, M.R., Newby, D.E., Sethi, T., Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice (2013) Glycobiology, 23 (6), pp. 654-663
  • Lu, Y., Zhang, M., Zhao, P., Modified citrus pectin inhibits galectin-3 function to reduce atherosclerotic lesions in apoE-deficient mice (2017) Molecular Medicine Reports, 16 (1), pp. 647-653
  • Giordanengo, L., Gea, S., Barbieri, G., Rabinovich, G.A., Anti-galectin-1 autoantibodies in human Trypanosoma cruzi infection: Differential expression of this β-galactosidebinding protein in cardiac Chagas' disease (2001) Clinical and Experimental Immunology, 124 (2), pp. 266-273
  • Parrillo, J.E., Burch, C., Shelhamer, J.H., Parker, M.M., Natanson, C., Schuette, W., A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance (1985) The Journal of Clinical Investigation, 76 (4), pp. 1539-1553
  • Van Tassell, B.W., Seropian, I.M., Toldo, S., Mezzaroma, E., Abbate, A., Interleukin-1β induces a reversible cardiomyopathy in the mouse (2013) Inflammation Research, 62 (7), pp. 637-640
  • Toldo, S., Mezzaroma, E., O'Brien, L., Interleukin-18 mediates interleukin-1-induced cardiac dysfunction (2014) American Journal of Physiology. Heart and Circulatory Physiology, 306 (7), pp. H1025-H1031
  • Bern, C., Chagas' disease (2015) The New England Journal of Medicine, 373 (5), pp. 456-466
  • Bocchi, E.A., Bestetti, R.B., Scanavacca, M.I., Cunha Neto, E., Issa, V.S., Chronic Chagas heart disease management: From etiology to cardiomyopathy treatment (2017) Journal of the American College of Cardiology, 70 (12), pp. 1510-1524
  • Medei, E.H., Nascimento, J.H.M., Pedrosa, R.C., Carvalho, A.C.C.D., Envolvimento de auto-anticorpos na fisiopatologia da doença de Chagas (2008) Arquivos Brasileiros de Cardiologia, 91 (4), pp. 281-286
  • Benatar, A.F., García, G.A., Bua, J., Galectin-1 prevents infection and damage induced by Trypanosoma cruzi on cardiac cells (2015) PLoS Neglected Tropical Diseases, 9 (10)
  • Reifenberg, K., Lehr, H.A., Torzewski, M., Interferon-γ induces chronic active myocarditis and cardiomyopathy in transgenic mice (2007) The American Journal of Pathology, 171 (2), pp. 463-472
  • Poncini, C.V., Ilarregui, J.M., Batalla, E.I., Trypanosoma cruzi infection imparts a regulatory program in dendritic cells and T cells via galectin-1-dependent mechanisms (2015) Journal of Immunology, 195 (7), pp. 3311-3324
  • Zuñiga, E., Rabinovich, G.A., Iglesias, M.M., Gruppi, A., Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis (2001) Journal of Leukocyte Biology, 70 (1), pp. 73-79
  • Stahl, P., Ruppert, V., Meyer, T., Trypomastigotes and amastigotes of Trypanosoma cruzi induce apoptosis and STAT3 activation in cardiomyocytes in vitro (2013) Apoptosis, 18 (6), pp. 653-663
  • Rodriguez, H.O., Guerrero, N.A., Fortes, A., Santi-Rocca, J., Gironès, N., Fresno, M., Trypanosoma cruzi strains cause different myocarditis patterns in infected mice (2014) Acta Tropica, 139, pp. 57-66
  • Galiè, N., Humbert, M., Vachiery, J.L., 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT) (2015) The European Respiratory Journal, 46 (4), pp. 903-975
  • Humbert, M., Morrell, N.W., Archer, S.L., Cellular and molecular pathobiology of pulmonary arterial hypertension (2004) Journal of the American College of Cardiology, 43 (12), pp. S13-S24
  • Gao, Y., Chen, T., Raj, J.U., Endothelial and smooth muscle cell interactions in the pathobiology of pulmonary hypertension (2016) American Journal of Respiratory Cell and Molecular Biology, 54 (4), pp. 451-460
  • Moiseeva, E.P., Spring, E.L., Baron, J.H., De Bono, D.P., Galectin-1 modulates attachment, spreading and migration of cultured vascular smooth muscle cells via interactions with cellular receptors and components of extracellular matrix (1999) Journal of Vascular Research, 36 (1), pp. 47-58
  • Miserocchi, G., Passi, A., Negrini, D., Del Fabbro, M., De Luca, G., Pulmonary interstitial pressure and tissue matrix structure in acute hypoxia (2001) American Journal of Physiology. Lung Cellular and Molecular Physiology, 280 (5), pp. L881-L887
  • Tsai, M.S., Chiang, M.T., Tsai, D.L., Galectin-1 restricts vascular smooth muscle cell motility via modulating adhesion force and focal adhesion dynamics (2018) Scientific Reports, 8 (1)
  • Moiseeva, E.P., Javed, Q., Spring, E.L., De Bono, D.P., Galectin 1 is involved in vascular smooth muscle cell proliferation (2000) Cardiovascular Research, 45 (2), pp. 493-502
  • Case, D., Irwin, D., Ivester, C., Mice deficient in galectin-1 exhibit attenuated physiological responses to chronic hypoxia-induced pulmonary hypertension (2007) American Journal of Physiology. Lung Cellular and Molecular Physiology, 292 (1), pp. L154-L164
  • Wang, J., Thio, S.S.C., Yang, S.S.H., Splice variant specific modulation of CaV1.2 calcium channel by galectin-1 regulates arterial constriction (2011) Circulation Research, 109 (11), pp. 1250-1258
  • Hu, Z., Li, G., Wang, J.W., Regulation of blood pressure by targeting CaV1.2-galectin-1 protein interaction (2018) Circulation, 138 (14), pp. 1431-1445
  • Freitag, N., Tirado-Gonzalez, I., Barrientos, G., Interfering with Gal-1-mediated angiogenesis contributes to the pathogenesis of preeclampsia (2013) Proceedings of the National Academy of Sciences of the United States of America, 110 (28), pp. 11451-11456
  • Akazawa, C., Nakamura, Y., Sango, K., Horie, H., Kohsaka, S., Distribution of the galectin-1 mRNA in the rat nervous system: Its transient upregulation in rat facial motor neurons after facial nerve axotomy (2004) Neuroscience, 125 (1), pp. 171-178
  • Sakaguchi, M., Okano, H., Neural stem cells, adult neurogenesis, and galectin-1: From bench to bedside (2012) Developmental Neurobiology, 72 (7), pp. 1059-1067
  • Qu, W.S., Wang, Y.H., Wang, J.P., Galectin-1 enhances astrocytic BDNF production and improves functional outcome in rats following ischemia (2010) Neurochemical Research, 35 (11), pp. 1716-1724
  • Ishibashi, S., Kuroiwa, T., Sakaguchi, M., Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke (2007) Experimental Neurology, 207 (2), pp. 302-313
  • Sasaki, T., Hirabayashi, J., Manya, H., Kasai, K., Endo, T., Galectin-1 induces astrocyte differentiation, which leads to production of brain-derived neurotrophic factor (2004) Glycobiology, 14 (4), pp. 357-363
  • Wang, J., Xia, J., Zhang, F., Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury (2015) Scientific Reports, 5 (1), p. 9621
  • Kadoya, T., Horie, H., Structural and functional studies of galectin-1: A novel axonal regeneration-promoting activity for oxidized galectin-1 (2005) Current Drug Targets, 6 (4), pp. 375-383
  • Kigerl, K.A., Gensel, J.C., Ankeny, D.P., Alexander, J.K., Donnelly, D.J., Popovich, P.G., Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord (2009) The Journal of Neuroscience, 29 (43), pp. 13435-13444
  • Lekishvili, T., Hesketh, S., Brazier, M.W., Brown, D.R., Mouse galectin-1 inhibits the toxicity of glutamate by modifying NR1 NMDA receptor expression (2006) The European Journal of Neuroscience, 24 (11), pp. 3017-3025
  • Tenne-Brown, J., Puche, A.C., Key, B., Expression of galectin-1 in the mouse olfactory system (1998) The International Journal of Developmental Biology, 42 (6), pp. 791-799
  • McGraw, J., Gaudet, A.D., Oschipok, L.W., Altered primary afferent anatomy and reduced thermal sensitivity in mice lacking galectin-1 (2005) Pain, 114 (1), pp. 7-18
  • He, X.W., Li, W.L., Li, C., Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic stroke (2017) Scientific Reports, 7 (1)
  • Dong, H., Wang, Z.H., Zhang, N., Liu, S.D., Zhao, J.J., Liu, S.Y., Serum galectin-3 level, not galectin-1, is associated with the clinical feature and outcome in patients with acute ischemic stroke (2017) Oncotarget, 8 (65), pp. 109752-109761
  • Liu, F.T., Rabinovich, G.A., Galectins: Regulators of acute and chronic inflammation (2010) Annals of the New York Academy of Sciences, 1183 (1), pp. 158-182
  • Yu, L., Ruifrok, W.P.T., Meissner, M., Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis (2013) Circulation. Heart Failure, 6 (1), pp. 107-117
  • González, G.E., Rhaleb, N.E., D'Ambrosio, M.A., Cardiac-deleterious role of galectin-3 in chronic angiotensin II-induced hypertension (2016) American Journal of Physiology-Heart and Circulatory Physiology, 311 (5), pp. H1287-H1296
  • Henderson, N.C., Sethi, T., The regulation of inflammation by galectin-3 (2009) Immunological Reviews, 230 (1), pp. 160-171
  • Chow, S.L., Maisel, A.S., Anand, I., Role of biomarkers for the prevention, assessment, and management of heart failure: A scientific statement from the American Heart Association (2017) Circulation, 135 (22), pp. e1054-e1091
  • Madrigal-Matute, J., Lindholt, J.S., Fernandez-Garcia, C.E., Galectin-3, a biomarker linking oxidative stress and inflammation with the clinical outcomes of patients with atherothrombosis (2014) Journal of the American Heart Association, 3 (4)
  • Sturm, A., Lensch, M., André, S., Human galectin-2: Novel inducer of T cell apoptosis with distinct profile of caspase activation (2004) Journal of Immunology, 173 (6), pp. 3825-3837
  • Loser, K., Sturm, A., Voskort, M., Galectin-2 suppresses contact allergy by inducing apoptosis in activated CD8+ T cells (2009) Journal of Immunology, 182 (9), pp. 5419-5429
  • Yildirim, C., Vogel, D.Y.S., Hollander, M.R., Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages (2015) PLoS One, 10 (4)
  • Laan Der Van, A.M., Schirmer, S.H., De Vries, M.R., Galectin-2 expression is dependent on the rs 7291467 polymorphism and acts as an inhibitor of arteriogenesis (2012) European Heart Journal, 33 (9), pp. 1076-1084
  • Ozaki, K., Inoue, K., Sato, H., Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-alpha secretion in vitro (2004) Nature, 429 (6987), pp. 72-75
  • Li, W., Xu, J., Wang, X., Lack of association between lymphotoxin-α, galectin-2 polymorphisms and coronary artery disease: A meta-analysis (2010) Atherosclerosis, 208 (2), pp. 433-436
  • John, S., Mishra, R., Galectin-9: From cell biology to complex disease dynamics (2016) Journal of Biosciences, 41 (3), pp. 507-534
  • Zhang, Y., Zhang, M., Li, X., Tang, Z., He, L., Lv, K., Expansion of CD11b+Ly-6C+ myeloid-derived suppressor cells (MDSCs) driven by galectin-9 attenuates CVB3-induced myocarditis (2017) Molecular Immunology, 83, pp. 62-71
  • Tao, Y.F., Lin, F., Yan, X.Y., Galectin-9 in combination with EX-527 prolongs the survival of cardiac allografts in mice after cardiac transplantation (2015) Transplantation Proceedings, 47 (6), pp. 2003-2009
  • Wan, L., Yang, R.Y., Liu, F.T., Galectin-12 in cellular differentiation, apoptosis and polarization (2018) International Journal of Molecular Sciences, 19 (1)
  • Elola, M.T., Chiesa, M.E., Alberti, A.F., Mordoh, J., Fink, N.E., Galectin-1 receptors in different cell types (2005) Journal of Biomedical Science, 12 (1), pp. 13-29
  • Stillman, B.N., Hsu, D.K., Pang, M., Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death (2006) Journal of Immunology, 176 (2), pp. 778-789
  • Markowska, A.I., Jefferies, K.C., Panjwani, N., Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor. Receptor 2 in human endothelial cells (2011) The Journal of Biological Chemistry, 286 (34), pp. 29913-29921
  • Davicino, R.C., Méndez-Huergo, S.P., Eliçabe, R.J., Galectin-1-driven tolerogenic programs aggravate Yersinia enterocolitica infection by repressing antibacterial immunity (2017) Journal of Immunology, 199 (4), pp. 1382-1392

Citas:

---------- APA ----------
Seropian, I.M., González, G.E., Maller, S.M., Berrocal, D.H., Abbate, A. & Rabinovich, G.A. (2018) . Galectin-1 as an Emerging Mediator of Cardiovascular Inflammation: Mechanisms and Therapeutic Opportunities. Mediators of Inflammation, 2018.
http://dx.doi.org/10.1155/2018/8696543
---------- CHICAGO ----------
Seropian, I.M., González, G.E., Maller, S.M., Berrocal, D.H., Abbate, A., Rabinovich, G.A. "Galectin-1 as an Emerging Mediator of Cardiovascular Inflammation: Mechanisms and Therapeutic Opportunities" . Mediators of Inflammation 2018 (2018).
http://dx.doi.org/10.1155/2018/8696543
---------- MLA ----------
Seropian, I.M., González, G.E., Maller, S.M., Berrocal, D.H., Abbate, A., Rabinovich, G.A. "Galectin-1 as an Emerging Mediator of Cardiovascular Inflammation: Mechanisms and Therapeutic Opportunities" . Mediators of Inflammation, vol. 2018, 2018.
http://dx.doi.org/10.1155/2018/8696543
---------- VANCOUVER ----------
Seropian, I.M., González, G.E., Maller, S.M., Berrocal, D.H., Abbate, A., Rabinovich, G.A. Galectin-1 as an Emerging Mediator of Cardiovascular Inflammation: Mechanisms and Therapeutic Opportunities. Mediators Inflamm. 2018;2018.
http://dx.doi.org/10.1155/2018/8696543