Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


When an animal rotates (whether it is an arthropod, a fish, a bird or a human) a drift of the visual panorama occurs over its retina, termed optic flow. The image is stabilized by compensatory behaviours (driven by the movement of the eyes, head or the whole body depending on the animal) collectively termed optomotor responses. The dipteran lobula plate has been consistently linked with optic flow processing and the control of optomotor responses. Crabs have a neuropil similarly located and interconnected in the optic lobes, therefore referred to as a lobula plate too. Here we show that the crabs' lobula plate is required for normal optomotor responses since the response was lost or severely impaired in animals whose lobula plate had been lesioned. The effect was behaviour-specific, since avoidance responses to approaching visual stimuli were not affected. Crabs require simpler optic flow processing than flies (because they move slower and in two-dimensional instead of three-dimensional space), consequently their lobula plates are relatively smaller. Nonetheless, they perform the same essential role in the visual control of behaviour. Our findings add a fundamental piece to the current debate on the evolutionary relationship between the lobula plates of insects and crustaceans.


Documento: Artículo
Título:Matched function of the neuropil processing optic flow in flies and crabs: the lobula plate mediates optomotor responses in Neohelice granulata
Autor:Barnatan, Yair; Tomsic, Daniel; Sztarker, Julieta; Cámera, A.
Filiación:Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Animals; Brachyura; Diptera; Humans; Neuropil; Optic Flow; Optic Lobe, Nonmammalian; Visual Pathways; Crab; Animal; Physiology; Visual system; Compensatory responses; Lobula complex; Optokinetic nystagmus
Página de inicio:1
Página de fin:35
Título revista:Royal Society Publishing
Título revista abreviado:Proc. R. Soc. B Biol. Sci.


  • Land MF. Motion and vision: why animals move their eyes. J Comp Physiol [A]. 1999 Oct;185(4):341–52.
  • Hardcastle BJ, Krapp HG. Evolution of Biological Image Stabilization. Curr Biol. 2016 Oct 24;26(20):R1010–21.
  • Cellini B, Salem W, Mongeau JM. Mechanisms of punctuated vision in fly flight. Curr Biol. 2021 Sep 27;31(18):4009-4024.e3.
  • Frasnelli E, Hempel de Ibarra N, Stewart FJ. The Dominant Role of Visual Motion Cues in Bumblebee Flight Control Revealed Through Virtual Reality. Front Physiol [Internet]. 2018;9. Available from:
  • Fry SN, Rohrseitz N, Straw AD, Dickinson MH. Visual control of flight speed in Drosophila melanogaster. J Exp Biol. 2009 Apr 15;212(8):1120–30.
  • Egelhaaf M, Kern R. Vision in flying insects. Curr Opin Neurobiol. 2002 Dec 1;12(6):699–706.
  • Hausen K. Motion sensitive interneurons in the optomotor system of the fly. Biol Cybern. 1982 Dec 1;46(1):67–79.
  • Hausen K. Motion sensitive interneurons in the optomotor system of the fly. Biol Cybern. 1982 Sep 1;45(2):143–56.
  • Borst A, Egelhaaf M. Principles of visual motion detection. Trends Neurosci. 1989;12(8):297–306.
  • Krapp HG, Hengstenberg R. Estimation of self-motion by optic flow processing in single visual interneurons. Nature. 1996 Dec 5;384(6608):463–6.
  • Krapp HG, Hengstenberg R, Egelhaaf M. Binocular Contributions to Optic Flow Processing in the Fly Visual System. J Neurophysiol. 2001 Feb 469 1;85(2):724–34.
  • Borst A, Haag J. Neural networks in the cockpit of the fly. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Jul;188(6):419–37.
  • Borst A, Haag J, Mauss AS. How fly neurons compute the direction of visual motion. J Comp Physiol A. 2020 Mar 1;206(2):109–24.
  • Geiger G, Nässel DR. Visual orientation behaviour of flies after selective laser beam ablation of interneurones. Nature. 1981 Oct 1;293(5831):398–9.
  • Haag J, Vermeulen A, Borst A. The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: III. Visual response properties. J Comput Neurosci. 1999 Dec;7(3):213–34.
  • Hausen K, Wehrhahn C. Microsurgical Lesion of Horizontal Cells Changes Optomotor Yaw Responses in the Blowfly Calliphora erythrocephala. Proc R Soc Lond B Biol Sci. 1983 Sep 22;219(1215):211.
  • Hausen K, Wehrhahn C. Neural circuits mediating visual flight control in flies. I. Quantitative comparison of neural and behavioral response characteristics. J Neurosci. 1989 Nov 1;9(11):3828–36.
  • Heisenberg M, Wonneberger R, Wolf R. Optomotor-blindH31—a Drosophila mutant of the lobula plate giant neurons. J Comp Physiol. 1978 Dec 487 1;124(4):287–96.
  • Kern R, Egelhaaf M. Optomotor course control in flies with largely asymmetric visual input. J Comp Physiol [A]. 2000 Jan;186(1):45–55.
  • Hausen K, Wehrhahn C, Boycott BB. Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala. Proc R Soc Lond B Biol Sci. 1983 Sep 22;219(1215):211–6.
  • Haikala V, Joesch M, Borst A, Mauss AS. Optogenetic Control of Fly Optomotor Responses. J Neurosci. 2013 Aug 21;33(34):13927–34.
  • Kim AJ, Fenk LM, Lyu C, Maimon G. Quantitative Predictions Orchestrate Visual Signaling in Drosophila. Cell. 2017 Jan 12;168(1–2):280-294.e12.
  • Bengochea M, Berón de Astrada M, Tomsic D, Sztarker J. A crustacean lobula plate: Morphology, connections, and retinotopic organization. J Comp Neurol. 2018 Jan 1;526(1):109–19.
  • Osorio D, Bacon JP. A good eye for arthropod evolution. BioEssays News Rev Mol Cell Dev Biol. 1994 Jun;16(6):419–24.
  • Sinakevitch I, Douglass JK, Scholtz G, Loesel R, Strausfeld NJ. Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol. 2003 Dec 8;467(2):150–72.
  • Strausfeld NJ. The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev. 2005 Jul;34(3):235–56.
  • Strausfeld NJ, Nassel DR. Neuroarchitecture of brain regions that subserve the compound eyes of crustacea and insect. In: Autrum H, editor. Handbook of sensory physiology, vol VII/6B. Berlin: Springer Verlag. 1980. p 1–132.
  • Sztarker J, Strausfeld NJ, Tomsic D. Organization of optic lobes that support motion detection in a semiterrestrial crab. J Comp Neurol. 2005 Dec 19;493(3):396–411.
  • Sztarker J, Strausfeld N, Andrew D, Tomsic D. Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus. J Comp Neurol. 2009 Mar 10;513(2):129–50.
  • Sztarker J, Tomsic D. Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab Neohelice granulata. J Comp Neurol. 2014 Oct 1;522(14):3177–93.
  • Shinomiya K, Takemura S ya, Rivlin PK, Plaza SM, Scheffer LK, Meinertzhagen IA. A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system. Front Neural Circuits. 2015; 9:33.
  • Shinomiya K, Huang G, Lu Z, Parag T, Xu CS, Aniceto R, et al. Comparisons between the ON- and OFF-edge motion pathways in the Drosophila brain. Borst A, VijayRaghavan K, editors. eLife. 2019 Jan 9;8:e40025.
  • Strausfeld NJ. The lobula plate is exclusive to insects. Arthropod Struct Dev. 2021 Mar 1;61:101031.
  • Horridge and Burrows. The Onset of the Fast Phase in the Optokinetic Response of the Crab, Carcinus. J Exp Biol.1968 49:299–313.
  • Barnes WJP, Barnes P. Sensory Basis and Functional Role of Eye Movements Elicited During Locomotion in the Land Crab Cardisoma Guanhumi. J Exp Biol. 1990 Nov 1;154(1):99–118.
  • De Astrada MB, Medan V, Tomsic D. How visual space maps in the optic neuropils of a crab. J Comp Neurol. 2011 Jun 15;519(9):1631–9.
  • Barnatan Y, Tomsic D, Sztarker J. Unidirectional Optomotor Responses and Eye Dominance in Two Species of Crabs. Front Physiol [Internet]. 2019 May 16 [cited 2019 Dec 9];10. Available from:
  • Layne J, Land M, Zeil J. Fiddler Crabs Use the Visual Horizon to Distinguish Predators from Conspecifics: A Review of the Evidence. J Mar Biol Assoc U K. 1997 Feb;77(1):43–54.
  • Purushothuman S, Marotte L, Stowe S, Johnstone DM, Stone J. The Response of Cerebral Cortex to Haemorrhagic Damage: Experimental Evidence from a Penetrating Injury Model. PLOS ONE. 2013 Mar 21;8(3):e59740.
  • Lopes G, Bonacchi N, Frazão J, Neto JP, Atallah BV, Soares S, et al. Bonsai: an event-based framework for processing and controlling data streams. Front Neuroinformatics [Internet]. 2015 Apr 8 [cited 2022 Apr 13];9. Available from:
  • R Core Team. R: A language and environment for 596 statistical computing. 2020
  • Venables WN, Ripley BD. Modern Applied Statistics with S, Fourth edition. 2002 Springer, New York. ISBN 0-387-95457-560 0,
  • Akaike H. Maximum likelihood identification of Gaussian autoregressive moving average models. 1973
  • Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York; 2002. 514 p.
  • Pinheiro J, Bates D, DebRoy S, Sarkar D and the R Development Core Team. nlme: Linear and Nonlinear Mixed Effects Models. 2013 R package version 3.1-108.
  • Fox J, Weisberg S. An R Companion to Applied Regression, Third edition. 2019 Sage, Thousand Oaks CA.
  • Barnes WJP, Nalbach HO. Eye movements in freely moving crabs: Their sensory basis and possible role in flow-field analysis. Comp Biochem Physiol A Physiol. 1993 Apr 1;104(4):675–93.
  • Barnes WJ, Horridge GA. Two-dimensional records of the eyecup movements of the crab Carcinus. J Exp Biol. 1969 Jun;50(3):673–82.
  • Horridge GA, Sandeman DC. Nervous control of optokinetic responses in the crab Carcinus. Proc R Soc Lond B Biol Sci. 1964 Dec 15;161:216–46.
  • Sandeman DC, Okajima A. Statocyst-Induced Eye Movements in the Crab Scylla Serrata: II. The Responses of the Eye Muscles. J Exp Biol. 1973 Feb 581 1;58(1):197–212.
  • Silvey GE, Sandeman DC. Integration between statocyst sensory neurons and oculomotor neurons in the crab Scylla serrata. J Comp Physiol. 1976 Jan 584 1;108(1):35–43.
  • Sandeman DC, Kien J, Erber J. Optokinetic eye movements in the crab, Carcinus maenas. J Comp Physiol. 1975 Sep 1;101(3):259–74.
  • PAUL H, NALBACH HO, VARJÚ D. Eye Movements in the Rock Crab Pachygrapsus Marmoratus Walking Along Straight and Curved Paths. J Exp Biol. 589 1990 Nov 1;154(1):81–97.
  • Paul H, Barnes WJP, Varjú D. Roles of eyes, leg proprioceptors and statocysts in the compensatory eye movements of freely walking land crabs (Cardisoma guanhumi). J Exp Biol. 1998 Dec 15;201(24):3395–409.
  • Rosner R, von Hadeln J, Salden T, Homberg U. Anatomy of the lobula complex in the brain of the praying mantis compared to the lobula complexes of the locust and cockroach. J Comp Neurol. 2017;525(10):2343–57.
  • Fabian JM, Jundi B el, Wiederman SD, O’Carroll DC. The complex optic lobe of dragonflies [Internet]. 2020 May [cited 2022 Jan 19] p. 2020.05.10.087437. Available from:
  • Paulk AC, Phillips-Portillo J, Dacks AM, Fellous JM, Gronenberg W. The Processing of Color, Motion, and Stimulus Timing Are Anatomically Segregated in the Bumblebee Brain. J Neurosci. 2008 Jun 18;28(25):6319–32.
  • Strausfeld NJ. Brain organization and the origin of insects: an assessment. Proc Biol Sci. 2009 Jun 7;276(1664):1929–37.
  • Strausfeld NJ. Crustacean-insect relationships: the use of brain characters to derive phylogeny amongst segmented invertebrates. Brain Behav Evol. 607 1998;52(4–5):186–206.
  • Kenning M, Harzsch S. Brain anatomy of the marine isopod Saduria entomon Linnaeus, 1758 (Valvifera, Isopoda) with special emphasis on the olfactory pathway. Front Neuroanat. 2013 7-32.
  • Lin C, Hoving H, Cronin T, Osborn K. Strange eyes, stranger brains: exceptional diversity of optic lobe organization in midwater crustaceans. Proc R Soc B Biol Sci. 2021 Apr 14;288.
  • Thoen HH, Strausfeld NJ, Marshall J. Neural organization of afferent pathways from the stomatopod compound eye. J Comp Neurol. 2017 Oct 616 1;525(14):3010–30.
  • Harzsch S, Hansson BS. Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. BMC Neurosci. 2008 Jun 30;9:58.
  • Krieger J, Hörnig MK, Sandeman RE, Sandeman DC, Harzsch S. Masters of communication: The brain of the banded cleaner shrimp Stenopus hispidus (Olivier, 1811) with an emphasis on sensory processing areas. J Comp Neurol. 2020 528(9):1561–87.
  • Meth R, Wittfoth C, Harzsch S. Brain architecture of the Pacific White Shrimp Penaeus vannamei Boone, 1931 (Malacostraca, Dendrobranchiata): correspondence of brain structure and sensory input? Cell Tissue Res. 2017 Aug 1;369(2):255–71.
  • Horseman BG, Macauley MWS, Barnes WJP. Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas. J Exp Biol. 2011 May 1;214(Pt 9):1586–98.
  • Berón de Astrada M, Tomsic D. Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura). J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Aug;188(7):539–51.
  • Tomsic D, Berón de Astrada M, Sztarker J. Identification of individual neurons reflecting short- and long-term visual memory in an arthropod. J Neurosci Off J Soc Neurosci. 2003 Sep 17;23(24):8539–46.
  • Medan V, Oliva D, Tomsic D. Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus. J Neurophysiol. 2007 Oct;98(4):2414–28.
  • Medan V, Berón De Astrada M, Scarano F, Tomsic D. A network of visual motion-sensitive neurons for computing object position in an arthropod. J Neurosci Off J Soc Neurosci. 2015 Apr 29;35(17):6654–66.
  • Scarano F, Tomsic D, Sztarker J. Direction Selective Neurons Responsive to Horizontal Motion in a Crab Reflect an Adaptation to Prevailing Movements in Flat Environments. J Neurosci Off J Soc Neurosci. 2020 Jul 15;40(29):5561–71.
  • Duistermars BJ, Care RA, Frye MA. Binocular interactions underlying the classic optomotor responses of flying flies. Front Behav Neurosci. 2012 6:6.
  • Pinto-Teixeira F, Koo C, Rossi AM, Neriec N, Bertet C, Li X, et al. Development of Concurrent Retinotopic Maps in the Fly Motion Detection Circuit. Cell. 2018 Apr 5;173(2):485-498.e11.
  • Barnatan, Yair; Tomsic, Daniel; Cámera, Alejandro; Sztarker, Julieta (2022), Optomotor response (eye movment) and avoidance responses (locomotor activity) of crabs Neohelice granulata for LP-lesioned, control lesioned and control crabs, Dryad, Dataset,


---------- APA ----------
Barnatan, Yair, Tomsic, Daniel, Sztarker, Julieta & Cámera, A. (2022) . Matched function of the neuropil processing optic flow in flies and crabs: the lobula plate mediates optomotor responses in Neohelice granulata. Royal Society Publishing, 289(1981), 1-35.
---------- CHICAGO ----------
Barnatan, Yair, Tomsic, Daniel, Sztarker, Julieta, Cámera, A.. "Matched function of the neuropil processing optic flow in flies and crabs: the lobula plate mediates optomotor responses in Neohelice granulata" . Royal Society Publishing 289, no. 1981 (2022) : 1-35.
---------- MLA ----------
Barnatan, Yair, Tomsic, Daniel, Sztarker, Julieta, Cámera, A.. "Matched function of the neuropil processing optic flow in flies and crabs: the lobula plate mediates optomotor responses in Neohelice granulata" . Royal Society Publishing, vol. 289, no. 1981, 2022, pp. 1-35.
---------- VANCOUVER ----------
Barnatan, Yair, Tomsic, Daniel, Sztarker, Julieta, Cámera, A.. Matched function of the neuropil processing optic flow in flies and crabs: the lobula plate mediates optomotor responses in Neohelice granulata. Proc. R. Soc. B Biol. Sci. 2022;289(1981):1-35.