Artículo

Rubinstein, M.; de Souza, F.S.J. "Evolution of transcriptional enhancers and animal diversity" (2013) Philosophical Transactions of the Royal Society B: Biological Sciences. 368(1632)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Deciphering the genetic bases that drive animal diversity is one of the major challenges of modern biology. Although four decades ago it was proposed that animal evolution was mainly driven by changes in cis-regulatory DNA elements controlling gene expression rather than in protein-coding sequences, only now are powerful bioinformatics and experimental approaches available to accelerate studies into how the evolution of transcriptional enhancers contributes to novel forms and functions. In the introduction to this Theme Issue, we start by defining the general properties of transcriptional enhancers, such as modularity and the coexistence of tight sequence conservation with transcription factor-binding site shuffling as different mechanisms that maintain the enhancer grammar over evolutionary time. We discuss past and current methods used to identify cell-type-specific enhancers and provide examples of howenhancers originate de novo, change and are lost in particular lineages. We then focus in the central part of this Theme Issue on analysing examples of how the molecular evolution of enhancers may change form and function. Throughout this introduction, we present the main findings of the articles, reviews and perspectives contributed to this Theme Issue that together illustrate some of the great advances and current frontiers in the field.

Registro:

Documento: Artículo
Título:Evolution of transcriptional enhancers and animal diversity
Autor:Rubinstein, M.; de Souza, F.S.J.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
Palabras clave:Enhancer; Evolution; Gene expression; Transgenic animals; bioinformatics; evolutionary biology; gene expression; genetic analysis; genetically modified organism; protein; species diversity; animal; binding site; biodiversity; biology; editorial; enhancer region; evolution; gene expression; genetics; human; methodology; molecular evolution; nucleotide sequence; transgenic animal; enhancer; evolution; gene expression; transgenic animals; Animals; Binding Sites; Biodiversity; Computational Biology; Conserved Sequence; Enhancer Elements, Genetic; Evolution, Molecular; Humans
Año:2013
Volumen:368
Número:1632
DOI: http://dx.doi.org/10.1098/rstb.2013.0017
Título revista:Philosophical Transactions of the Royal Society B: Biological Sciences
Título revista abreviado:Philos. Trans. R. Soc. B Biol. Sci.
ISSN:09628436
CODEN:PTRBA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09628436_v368_n1632_p_Rubinstein

Referencias:

  • King, M.C., Wilson, A.C., Evolution at two levels in humans and chimpanzees (1975) Science, 188, pp. 107-116. , doi:10.1126/science.1090005
  • Waterston, R.H., Initial sequencing and comparative analysis of the mouse genome (2002) Nature, 420, pp. 520-562. , doi:10.1038/nature01262
  • Initial sequence of the chimpanzee genome and comparison with the human genome (2005) Nature, 437, pp. 69-87. , Chimpanzee Sequencing and Analysis Consortium, doi:10.1038/nature04072
  • Prabhakar, S., Close sequence comparisons are sufficient to identify human cis-regulatory elements (2006) Genome Res, 16, pp. 855-863. , (doi:10.1101/ gr.4717506)
  • Clarke, S.L., Vandermeer, J.E., Wenger, A.M., Schaar, B.T., Ahituv, N., Bejerano, G., Human developmental enhancers conserved between deuterostomes and protostomes (2012) PLoS Genet, 8, pp. e1002852. , doi:10.1371/journal.pgen.1002852
  • Konopka, G., Human-specific transcriptional regulation of CNS development genes by FOXP2 (2009) Nature, 462, pp. 213-217. , doi:10.1038/nature08549
  • Hoekstra, H.E., Coyne, J.A., The locus of evolution, evo devo and the genetics of adaptation (2007) Evolution, 61, pp. 995-1016. , doi:10.1111/j.1558-5646.2007.00105.x
  • Britten, R.J., Davidson, E.H., Gene regulation for higher cells, a theory (1969) Science, 165, pp. 349-357. , doi:10.1126/science.165.3891.349
  • Ohno, S., Simplicity of mammalian regulatory systems (1972) Dev. Biol, 27, pp. 131-136. , doi:10.1016/ 0012-1606(72)90117-0
  • Carroll, S.B., Evolution at two levels, on genes and form (2005) PLoS Biol, 3, pp. e245. , doi:10.1371/journal. pbio.0030245
  • Wray, G.A., The evolutionary significance of cisregulatory mutations (2007) Nat. Rev. Genet, 8, pp. 206-216. , doi:10.1038/nrg2063
  • Carroll, S.B., Evo-devo and an expanding evolutionary synthesis, a genetic theory of morphological evolution (2008) Cell, 134, pp. 25-36. , doi:10.1016/j.cell.2008.06.030
  • Wittkopp, P.J., Kalay, G., Cis-regulatory elements, molecular mechanisms and evolutionary processes underlying divergence (2011) Nat. Rev. Genet, 13, pp. 59-69
  • Lettice, L.A., A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly (2003) Hum. Mol. Genet, 12, pp. 1725-1735. , doi:10.1093/ hmg/ddg180
  • Jeong, Y., Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein (2008) Nat. Genet, 40, pp. 1348-1353. , doi:10.1038/ng.230
  • Ghiasvand, N.M., Rudolph, D.D., Mashayekhi, M., Brzezinski, J.A.T., Goldman, D., Glaser, T., Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease (2011) Nat. Neurosci, 14, pp. 578-586. , doi:10.1038/nn.2798
  • Spielmann, M., Homeotic arm-to-leg transformation associated with genomic rearrangements at the PITX1 locus (2012) Am. J. Hum. Genet, 91, pp. 629-635. , doi:10.1016/j.ajhg.2012.08.014)
  • Sur, I.K., Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors (2012) Science, 338, pp. 1360-1363. , doi:10. 1126/science.1228606
  • Ragvin, A., Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3 (2010) Proc. Natl Acad. Sci. USA, 107, pp. 775-780. , doi:10.1073/pnas.0911591107
  • Maurano, M.T., Systematic localization of common disease-associated variation in regulatory DNA (2012) Science, 337, pp. 1190-1195. , doi:10.1126/science.1222794
  • Hadley, M.E., Haskell-Luevano, C., The proopiomelanocortin system (1999) Ann. NY Acad. Sci, 885, pp. 1-21. , doi:10.1111/j.1749-6632.1999.tb08662.x
  • Krivega, I., Dean, A., Enhancer and promoter interactions-long distance calls (2012) Curr. Opin. Genet. Dev, 22, pp. 79-85. , doi:10.1016/j.gde.2011.11.001
  • Kagey, M.H., Mediator and cohesin connect gene expression and chromatin architecture (2010) Nature, 467, pp. 430-435. , doi:10.1038/nature09380
  • Kind, J., van Steensel, B., Genome-nuclear lamina interactions and gene regulation (2010) Curr. Opin. Cell Biol, 22, pp. 320-355. , doi:10.1016/j.ceb.2010.04.002
  • van Heyningen, V., Bickmore, W., Regulation from a distance: Long-range control of gene expression in development and disease (2013) Phil. Trans. R. Soc. B, 368, p. 20120372. , doi:10.1098/rstb.2012.0372
  • Banerji, J., Rusconi, S., Schaffner, W., Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences (1981) Cell, 27, pp. 299-308. , doi:10.1016/ 0092-8674(81)90413-X
  • Arnosti, D.N., Kulkarni, M.M., Transcriptional enhancers, intelligent enhanceosomes or flexible billboards? (2005) J. Cell Biochem, 94, pp. 890-898. , doi:10. 1002/jcb.20352
  • Merika, M., Thanos, D., Enhanceosomes (2001) Curr. Opin. Genet. Dev, 11, pp. 205-208. , doi:10.1016/ S0959-437X(00)00180-5
  • Arnosti, D.N., Barolo, S., Levine, M., Small, S., The eve stripe 2 enhancer employs multiple modes of transcriptional synergy (1996) Development, 122, pp. 205-214
  • Santangelo, A.M., de Souza, F.S., Franchini, L.F., Bumaschny, V.F., Low, M.J., Rubinstein, M., Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene (2007) PLoS Genet, 3, pp. 1813-1826. , doi:10.1371/journal.pgen.0030166
  • Franchini, L.F., Lopez-Leal, R., Nasif, S., Beati, P., Gelman, D.M., Low, M.J., de Souza, F.J.S., Rubinstein, M., Convergent evolution of two mammalian neuronal enhancers by sequential exaptation of unrelated retroposons (2011) Proc. Natl Acad. Sci. USA, 108, pp. 15270-15275. , doi:10.1073/pnas.1104997108
  • Swanson, C.I., Evans, N.C., Barolo, S., Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer (2010) Dev. Cell, 18, pp. 359-370. , doi:10.1016/j.devcel.2009.12.026
  • Evans, N.C., Swanson, C.I., Barolo, S., Sparkling insights into enhancer structure, function, and evolution (2012) Curr. Top. Dev. Biol, 98, pp. 97-120. , doi:10. 1016/B978-0-12-386499-4.00004-5
  • Junion, G., Spivakov, M., Girardot, C., Braun, M., Gustafson, E.H., Birney, E., Furlong, E.E., A transcription factor collective defines cardiac cell fate and reflects lineage history (2012) Cell, 148, pp. 473-486. , doi:10.1016/j.cell.2012.01.030
  • Li, X.Y., Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm (2008) PLoS Biol, 6, pp. e27. , doi:10. 1371/journal.pbio.0060027
  • Fisher, W.W., DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila (2012) Proc. Natl Acad. Sci. USA, 109, pp. 21330-21335. , doi:10.1073/pnas.1209589110
  • Ramos, A.I., Barolo, S., Low-affinity transcription factor binding sites shape morphogen responses and enhancer evolution (2013) Phil. Trans. R. Soc. B, 368, p. 20130018. , doi:10.1098/rstb.2013.0018
  • Guturu, H., Doxey, A.C., Wenger, A.M., Bejerano, G., Structure-aided prediction of mammalian transcription factor complexes in conserved noncoding elements (2013) Phil. Trans. R. Soc. B, 368, p. 20130029. , doi:10.1098/rstb.2013.0029
  • Jeong, Y., El-Jaick, K., Roessler, E., Muenke, M., Epstein, D.J., A functional screen for sonic hedgehog regulatory elements across a 1 Mb interval identifies long-range ventral forebrain enhancers (2006) Development, 133, pp. 761-772. , doi:10.1242/dev.02239
  • Sagai, T., Hosoya, M., Mizushina, Y., Tamura, M., Shiroishi, T., Elimination of a long-range cisregulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb (2005) Development, 132, pp. 797-803. , doi:10.1242/dev.01613
  • Langlais, D., Couture, C., Sylvain-Drolet, G., Drouin, J., A pituitary-specific enhancer of the POMC gene with preferential activity in corticotrope cells (2011) Mol. Endocrinol, 25, pp. 348-359. , doi:10.1210/me.2010-0422
  • de Souza, F.S., Santangelo, A.M., Bumaschny, V., Avale, M.E., Smart, J.L., Low, M.J., Rubinstein, M., Identification of neuronal enhancers of the proopiomelanocortin gene by transgenic mouse analysis and phylogenetic footprinting (2005) Mol. Cell Biol, 25, pp. 3076-3086. , doi:10.1128/MCB.25.8.3076-3086.2005
  • Ertzer, R., Muller, F., Hadzhiev, Y., Rathnam, S., Fischer, N., Rastegar, S., Strahle, U., Cooperation of sonic hedgehog enhancers in midline expression (2007) Dev. Biol, 301, pp. 578-589. , doi:10.1016/j.ydbio.2006.11.004
  • Marinic, M., Aktas, T., Ruf, S., Spitz, F., An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape (2013) Dev. Cell, 24, pp. 530-542. , doi:10.1016/j.devcel.2013.01.025
  • Barolo, S., Shadow enhancers, frequently asked questions about distributed cis-regulatory information and enhancer redundancy (2012) Bioessays, 34, pp. 135-141. , doi:10.1002/bies.201100121
  • Frankel, N., Multiple layers of complexity in cisregulatory regions of developmental genes (2012) Dev. Dyn, 241, pp. 1857-1866. , doi:10.1002/dvdy.23871
  • Hong, J.W., Hendrix, D.A., Levine, M.S., Shadow enhancers as a source of evolutionary novelty (2008) Science, 321, p. 1314. , doi:10.1126/science.1160631
  • Frankel, N., Davis, G.K., Vargas, D., Wang, S., Payre, F., Stern, D.L., Phenotypic robustness conferred by apparently redundant transcriptional enhancers (2010) Nature, 466, pp. 490-493. , doi:10.1038/nature09158
  • Perry, M.W., Boettiger, A.N., Bothma, J.P., Levine, M., Shadow enhancers foster robustness of Drosophila gastrulation (2010) Curr. Biol, 20, pp. 1562-1567. , doi:10.1016/j.cub.2010.07.043
  • Haeussler, M., Joly, J.S., When needles look like hay: How to find tissue-specific enhancers in model organism genomes (2011) Dev. Biol, 350, pp. 239-254. , doi:10.1016/j.ydbio.2010.11.026
  • Heintz, N., Analysis of mammalian central nervous system gene expression and function using bacterial artificial chromosome-mediated transgenesis (2000) Hum. Mol. Genet, 9, pp. 937-943. , doi:10.1093/hmg/9.6.937
  • Uchikawa, M., Ishida, Y., Takemoto, T., Kamachi, Y., Kondoh, H., Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals (2003) Dev. Cell, 4, pp. 509-519. , doi:10.1016/S1534-5807(03)00088-1)
  • Wasserman, W.W., Sandelin, A., Applied bioinformatics for the identification of regulatory elements (2004) Nat. Rev. Genet, 5, pp. 276-287. , doi:10.1038/nrg1315
  • Tagle, D.A., Koop, B.F., Goodman, M., Slightom, J.L., Hess, D.L., Jones, R.T., Embryonic epsilon and gamma globin genes of a prosimian primate (Galago crassicaudatus). Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints (1988) J. Mol. Biol, 203, pp. 439-455. , doi:10.1016/0022-2836(88)90011-3)
  • Nobrega, M.A., Ovcharenko, I., Afzal, V., Rubin, E.M., Scanning human gene deserts for long-range enhancers (2003) Science, 302, p. 413. , doi:10.1126/science.1088328
  • Woolfe, A., Highly conserved non-coding sequences are associated with vertebrate development (2005) PLoS Biol, 3, pp. e7. , doi:10.1371/journal.pbio.0030007
  • Pennacchio, L.A., In vivo enhancer analysis of human conserved non-coding sequences (2006) Nature, 444, pp. 499-502. , doi:10.1038/nature05295
  • Shin, J.T., Human-zebrafish non-coding conserved elements act in vivo to regulate transcription (2005) Nucleic Acids Res, 33, pp. 5437-5445. , doi:10.1093/nar/gki853
  • Plessy, C., Dickmeis, T., Chalmel, F., Strahle, U., Enhancer sequence conservation between vertebrates is favoured in developmental regulator genes (2005) Trends Genet, 21, pp. 207-210. , doi:10.1016/j.tig.2005.02.006
  • Woolfe, A., Elgar, G., Organization of conserved elements near key developmental regulators in vertebrate genomes (2008) Adv. Genet, 61, pp. 307-338. , doi:10.1016/S0065-2660(07)00012-0
  • Lindblad-Toh, K., A high-resolution map of human evolutionary constraint using 29 mammals (2011) Nature, 478, pp. 476-482. , doi:10.1038/nature10530
  • Bejerano, G., Ultraconserved elements in the human genome (2004) Science, 304, pp. 1321-1325. , doi:10.1126/science.1098119
  • Royo, J.L., Transphyletic conservation of developmental regulatory state in animal evolution (2011) Proc. Natl Acad. Sci. USA, 108, pp. 14186-14191. , doi:10.1073/pnas.1109037108
  • Harmston, N., Barešić, A., Lenhard, B., The mystery of extreme non-coding conservation (2013) Phil. Trans. R. Soc. B, 368, p. 20130021. , doi:10.1098/rstb.2013.0021
  • Maeso, I., Irimia, M., Tena, J.J., Casares, F., Gómez-Skarmeta, J.L., Deep conservation of cis-regulatory elements in metazoans (2013) Phil. Trans. R. Soc. B, 368, p. 20130020. , doi:10.1098/rstb.2013.0020
  • Visel, A., ChIP-seq accurately predicts tissue-specific activity of enhancers (2009) Nature, 457, pp. 854-858. , doi:10.1038/nature07730
  • Heintzman, N.D., Histone modifications at human enhancers reflect global cell-type-specific gene expression (2009) Nature, 459, pp. 108-112. , doi:10.1038/nature07829
  • Zentner, G.E., Scacheri, P.C., The chromatin fingerprint of gene enhancer elements (2012) J. Biol. Chem, 287, pp. 30888-30896. , doi:10.1074/jbc.R111.296491
  • Harmston, N., Lenhard, B., Chromatin and epigenetic features of long-range gene regulation (2013) Nucleic Acids Res, 41, pp. 7185-7199. , doi:10.1093/ nar/gkt499
  • He, A., Kong, S.W., Ma, Q., Pu, W.T., Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart (2011) Proc. Natl Acad. Sci. USA, 108, pp. 5632-5637. , doi:10.1073/pnas. 1016959108
  • Gotea, V., Visel, A., Westlund, J.M., Nobrega, M.A., Pennacchio, L.A., Ovcharenko, I., Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers (2010) Genome Res, 20, pp. 565-577. , doi:10. 1101/gr.104471.109
  • Goke, J., Combinatorial binding in human and mouse embryonic stem cells identifies conserved enhancers active in early embryonic development (2011) PLoS Comput. Biol, 7, pp. e1002304. , doi:10.1371/journal.pcbi.1002304
  • Whyte, W.A., Master transcription factors and mediator establish super-enhancers at key cell identity genes (2013) Cell, 153, pp. 307-319. , doi:10.1016/j. cell.2013.03.035
  • Bernstein, B.E., An integrated encyclopedia of DNA elements in the human genome (2012) Nature, 489, pp. 57-74. , doi:10.1038/nature11247
  • Shen, Y., A map of the cis-regulatory sequences in the mouse genome (2012) Nature, 488, pp. 116-120. , doi:10.1038/nature11243
  • Sakabe, N.J., Nobrega, M.A., Beyond the ENCODE project: Using genomics and epigenomics strategies to study enhancer evolution (2013) Phil. Trans. R. Soc. B, 368, p. 20130022. , doi:10.1098/rstb.2013.0022
  • de Souza, F.S., Franchini, L.F., Rubinstein, M., Exaptation of transposable elements into novel cis-regulatory elements: Is the evidence always strong? (2013) Mol. Biol. Evol, 30, pp. 1239-1251. , doi:10.1093/molbev/mst045
  • Graur, D., Zheng, Y., Price, N., Azevedo, R.B., Zufall, R.A., Elhaik, E., On the immortality of television sets, 'function' in the human genome according to the evolution-free gospel of ENCODE (2013) Genome Biol. Evol, 5, pp. 578-590. , doi:10.1093/gbe/evt028
  • Struhl, K., Transcriptional noise and the fidelity of initiation by RNA polymerase II (2007) Nat. Struct. Mol. Biol, 14, pp. 103-105. , doi:10.1038/nsmb0207-103
  • Biggin, M.D., Animal transcription networks as highly connected, quantitative continua (2011) Dev. Cell, 21, pp. 611-626. , doi:10.1016/j.devcel.2011.09.008
  • Doolittle, W.F., Is junk DNA bunk? A critique of ENCODE (2013) Proc. Natl Acad. Sci. USA, 110, pp. 5294-5300. , doi:10.1073/pnas.1221376110
  • White, M.A., Myers, C.A., Corbo, J.C., Cohen, B.A., Massively parallel in vivo enhancer assay reveals that highly local features determine the cisregulatory function of ChIP-seq peaks (2013) Proc. Natl Acad. Sci. USA, 110, pp. 11952-11957. , doi:10.1073/ pnas.1307449110
  • Overstreet, L.S., A transgenic marker for newly born granule cells in dentate gyrus (2004) J. Neurosci, 24, pp. 3251-3259. , doi:10.1523/ JNEUROSCI.5173-03.2004
  • Perederiy, J.V., Luikart, B.W., Washburn, E.K., Schnell, E., Westbrook, G.L., Neural injury alters proliferation and integration of adult-generated neurons in the dentate gyrus (2013) J. Neurosci, 33, pp. 4754-4767. , doi:10.1523/JNEUROSCI.4785-12.2013
  • Lynch, M., The frailty of adaptive hypotheses for the origins of organismal complexity (2007) Proc. Natl Acad. Sci. USA, 104, pp. 8597-8604. , doi:10.1073/pnas.0702207104
  • Weirauch, M.T., Hughes, T.R., Conserved expression without conserved regulatory sequence: The more things change, the more they stay the same (2010) Trends Genet, 26, pp. 66-74. , doi:10.1016/j.tig.2009.12.002)
  • Goode, D.K., Callaway, H.A., Cerda, G.A., Lewis, K.E., Elgar, G., Minor change, major difference: Divergent functions of highly conserved cis-regulatory elements subsequent to whole genome duplication events (2011) Development, 138, pp. 879-884. , doi:10.1242/dev.055996
  • Ting, C.N., Rosenberg, M.P., Snow, C.M., Samuelson, L.C., Meisler, M.H., Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene (1992) Genes Dev, 6, pp. 1457-1465. , doi:10.1101/gad.6.8.1457
  • Keller, S.A., Rosenberg, M.P., Johnson, T.M., Howard, G., Meisler, M.H., Regulation of amylase gene expression in diabetic mice is mediated by a cis-acting upstream element close to the pancreasspecific enhancer (1990) Genes Dev, 4, pp. 1316-1321. , doi:10.1101/gad.4.8.1316
  • Lowe, C.B., Haussler, D., 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome (2012) PLoS ONE, 7, pp. e43128. , doi:10.1371/journal.pone.0043128
  • Franchini, L.F., de Souza, F.S., Low, M.J., Rubinstein, M., Positive selection of co-opted mobile genetic elements in a mammalian gene: If you can't beat them, join them (2012) Mob. Genet. Elem, 2, pp. 106-109. , doi:10.4161/mge.20267
  • Eichenlaub, M.P., Ettwiller, L., De novo genesis of enhancers in vertebrates (2011) PLoS Biol, 9, pp. e1001188. , doi:10.1371/journal.pbio.1001188
  • Cande, J.D., Chopra, V.S., Levine, M., Evolving enhancer-promoter interactions within the tinman complex of the flour beetle, Tribolium castaneum (2009) Development, 136, pp. 3153-3160. , doi:10.1242/ dev.038034
  • Ludwig, M.Z., Bergman, C., Patel, N.H., Kreitman, M., Evidence for stabilizing selection in a eukaryotic enhancer element (2000) Nature, 403, pp. 564-567. , doi:10.1038/35000615
  • Ludwig, M.Z., Palsson, A., Alekseeva, E., Bergman, C.M., Nathan, J., Kreitman, M., Functional evolution of a cis-regulatory module (2005) PLoS Biol, 3, pp. e93. , doi:10. 1371/journal.pbio.0030093
  • Hare, E.E., Peterson, B.K., Iyer, V.N., Meier, R., Eisen, M.B., Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation (2008) PLoS Genet, 4, pp. e1000106. , doi:10.1371/journal.pgen.1000106
  • Fisher, S., Grice, E.A., Vinton, R.M., Bessling, S.L., McCallion, A.S., Conservation of RET regulatory function from human to zebrafish without sequence similarity (2006) Science, 312, pp. 276-279. , doi:10.1126/ science.1124070
  • Domené, S., Bumaschny, V.F., de Souza, F.S.J., Franchini, L.F., Nasif, S., Low, M.J., Rubinstein, M., Enhancer turnover and conserved regulatory function in vertebrate evolution (2013) Phil. Trans. R. Soc. B, 368, p. 20130027. , doi:10.1098/rstb.2013.0027
  • Hadzhiev, Y., Lang, M., Ertzer, R., Meyer, A., Strahle, U., Muller, F., Functional diversification of sonic hedgehog paralog enhancers identified by phylogenomic reconstruction (2007) Genome Biol, 8, pp. R106. , doi:10.1186/gb-2007-8-6-r106
  • Tvrdik, P., Capecchi, M.R., Reversal of Hox1 gene subfunctionalization in the mouse (2006) Dev. Cell, 11, pp. 239-250. , doi:10.1016/j.devcel.2006.06.016
  • Rebeiz, M., Jikomes, N., Kassner, V.A., Carroll, S.B., Evolutionary origin of a novel gene expression pattern through co-option of the latent activities of existing regulatory sequences (2011) Proc. Natl Acad. Sci. USA, 108, pp. 10036-10043. , doi:10.1073/pnas.1105937108
  • Glassford, W.J., Rebeiz, M., Assessing constraints on the path of regulatory sequence evolution (2013) Phil. Trans. R. Soc. B, 368, p. 20130026. , doi:10.1098/rstb. 2013.0026
  • Hiller, M., Schaar, B.T., Bejerano, G., Hundreds of conserved non-coding genomic regions are independently lost in mammals (2012) Nucleic Acids Res, 40, pp. 11463-11476. , doi:10.1093/nar/gks905
  • Ahituv, N., Deletion of ultraconserved elements yields viable mice (2007) PLoS Biol, 5, pp. e234. , doi:10.1371/journal.pbio.0050234
  • Ochi, H., Tamai, T., Nagano, H., Kawaguchi, A., Sudou, N., Ogino, H., Evolution of a tissue-specific silencer underlies divergence in the expression of pax2 and pax8 paralogues (2012) Nat. Commun, 3, p. 848. , doi:10.1038/ncomms1851
  • Reed, R.D., Optix drives the repeated convergent evolution of butterfly wing pattern mimicry (2011) Science, 333, pp. 1137-1141. , doi:10.1126/science.1208227
  • Supple, M.A., Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies (2013) Genome Res, 23, pp. 1248-1257. , doi:10.1101/gr.150615.112
  • Ingram, C.J., Mulcare, C.A., Itan, Y., Thomas, M.G., Swallow, D.M., Lactose digestion and the evolutionary genetics of lactase persistence (2009) Hum. Genet, 124, pp. 579-591. , doi:10.1007/s00439-008-0593-6
  • Tishkoff, S.A., Convergent adaptation of human lactase persistence in Africa and Europe (2007) Nat. Genet, 39, pp. 31-40. , doi:10.1038/ng1946
  • Belting, H.G., Shashikant, C.S., Ruddle, F.H., Modification of expression and cis-regulation of Hoxc8 in the evolution of diverged axial morphology (1998) Proc. Natl Acad. Sci. USA, 95, pp. 2355-2360. , doi:10.1073/pnas.95.5.2355
  • Chan, Y.F., Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer (2010) Science, 327, pp. 302-305. , doi:10. 1126/science.1182213
  • Shapiro, M.D., Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks (2004) Nature, 428, pp. 717-723. , doi:10.1038/ nature02415
  • Cretekos, C.J., Wang, Y., Green, E.D., Martin, J.F., Rasweiler, J.J.T., Behringer, R.R., Regulatory divergence modifies limb length between mammals (2008) Genes Dev, 22, pp. 141-151. , doi:10.1101/gad.1620408
  • McLean, C.Y., Human-specific loss of regulatory DNA and the evolution of human-specific traits (2011) Nature, 471, pp. 216-219. , doi:10.1038/ nature09774
  • Freitas, R., Gomez-Marin, C., Wilson, J.M., Casares, F., Gomez-Skarmeta, J.L., Hoxd13 contribution to the evolution of vertebrate appendages (2012) Dev. Cell, 23, pp. 1219-1229. , doi:10.1016/j.devcel.2012.10.015
  • Guerreiro, I., Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine (2013) Proc. Natl Acad. Sci. USA, 110, pp. 10682-10686. , doi:10.1073/pnas.1300592110
  • Gompel, N., Prud'homme, B., Wittkopp, P.J., Kassner, V.A., Carroll, S.B., Chance caught on the wing, cisregulatory evolution and the origin of pigment patterns in Drosophila (2005) Nature, 433, pp. 481-487. , doi:10.1038/nature03235
  • Arnoult, L., Emergence and diversification of fly pigmentation through evolution of a gene regulatory module (2013) Science, 339, pp. 1423-1426. , doi:10.1126/science.1233749
  • Prud'homme, B., Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene (2006) Nature, 440, pp. 1050-1053. , doi:10. 1038/nature04597
  • Jeong, S., Rokas, A., Carroll, S.B., Regulation of body pigmentation by the abdominal-B Hox protein and its gain and loss in Drosophila evolution (2006) Cell, 125, pp. 1387-1399. , doi:10.1016/j.cell.2006.04.043
  • Frankel, N., Erezyilmaz, D.F., McGregor, A.P., Wang, S., Payre, F., Stern, D.L., Morphological evolution caused by many subtle-effect substitutions in regulatory DNA (2011) Nature, 474, pp. 598-603. , doi:10.1038/nature10200
  • McGregor, A.P., Morphological evolution through multiple cis-regulatory mutations at a single gene (2007) Nature, 448, pp. 587-590. , doi:10.1038/ nature05988
  • Frankel, N., Wang, S., Stern, D.L., Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution (2012) Proc. Natl Acad. Sci. USA, 109, pp. 20975-20979. , doi:10. 1073/pnas.1207715109
  • Jeong, S., Rebeiz, M., Andolfatto, P., Werner, T., True, J., Carroll, S.B., The evolution of gene regulation underlies a morphological difference between two Drosophila sister species (2008) Cell, 132, pp. 783-793. , doi:10.1016/j.cell.2008.01.014
  • Rebeiz, M., Pool, J.E., Kassner, V.A., Aquadro, C.F., Carroll, S.B., Stepwise modification of a modular enhancer underlies adaptation in a Drosophila population (2009) Science, 326, pp. 1663-1667. , doi:10.1126/science. 1178357
  • Stern, D.L., Frankel, N., The structure and evolution of cis-regulatory regions: The shavenbaby story (2013) Phil. Trans. R. Soc. B, 368, p. 20130028. , doi:10.1098/rstb.2013.0028
  • Woltering, J.M., Axial patterning in snakes and caecilians, evidence for an alternative interpretation of the Hox code (2009) Dev. Biol, 332, pp. 82-89. , doi:10.1016/j.ydbio.2009.04.031
  • Vinagre, T., Moncaut, N., Carapuco, M., Novoa, A., Bom, J., Mallo, M., Evidence for a myotomal Hox/ Myf cascade governing nonautonomous control of rib specification within global vertebral domains (2010) Dev. Cell, 18, pp. 655-661. , doi:10.1016/j.devcel.2010.02.011
  • Mansfield, J.H., Cis-regulatory change associated with snake body plan evolution (2013) Proc. Natl Acad. Sci. USA, 110, p. 104. , doi:10.1073/pnas. 1307778110
  • Lowe, C.B., Three periods of regulatory innovation during vertebrate evolution (2011) Science, 333, pp. 1019-1024. , doi:10.1126/science.1202702
  • Lynch, V.J., Leclerc, R.D., May, G., Wagner, G.P., Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals (2011) Nat. Genet, 43, pp. 1154-1159. , doi:10. 1038/ng.917
  • Emera, D., Wagner, G.P., Transposable element recruitments in the mammalian placenta, impacts and mechanisms (2012) Brief Funct. Genomics, 11, pp. 267-276. , doi:10.1093/bfgp/els013
  • Cotney, J., The evolution of lineagespecific regulatory activities in the human embryonic limb (2013) Cell, 154, pp. 185-196. , doi:10.1016/j. cell.2013.05.056
  • Schneider, I., Shubin, N.H., Making limbs from fins (2012) Dev. Cell, 23, pp. 1121-1122. , doi:10.1016/j. devcel.2012.11.011
  • Sumiyama, K., Saitou, N., Loss-of-function mutation in a repressor module of human-specifically activated enhancer HACNS1 (2011) Mol. Biol. Evol, 28, pp. 3005-3007. , doi:10.1093/molbev/msr231
  • Sucena, E., Stern, D.L., Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shaven-baby (2000) Proc. Natl Acad. Sci. USA, 97, pp. 4530-4534. , doi:10.1073/pnas.97.9.4530
  • Carbone, M.A., Llopart, A., Deangelis, M., Coyne, J.A., Mackay, T.F., Quantitative trait loci affecting the difference in pigmentation between Drosophila yakuba and D. santomea (2005) Genetics, 171, pp. 211-225. , doi:10.1534/genetics.105.044412
  • Pool, J.E., Aquadro, C.F., The genetic basis of adaptive pigmentation variation in Drosophila melanogaster (2007) Mol. Ecol, 16, pp. 2844-2851. , doi:10. 1111/j.1365-294X.2007.03324.x
  • Glaser-Schmitt, A., Catalán, A., Parsch, J., Adaptive divergence of a transcriptional enhancer between populations of Drosophila melanogaster (2013) Phil. Trans. R. Soc. B, 368, p. 20130024. , doi:10.1098/rstb.2013.0024
  • Preuss, T.M., Human brain evolution, from gene discovery to phenotype discovery (2012) Proc. Natl Acad. Sci. USA, 109 (SUPPL. 1), pp. 10709-10716. , doi:10. 1073/pnas.1201894109
  • Kamm, G.B., Pisciottano, F., Kliger, R., Franchini, L.F., The developmental brain gene NPAS3 contains the largest number of accelerated regulatory sequences in the human genome (2013) Mol. Biol. Evol, 30, pp. 1088-1102. , doi:10.1093/molbev/mst023
  • Prabhakar, S., Human-specific gain of function in a developmental enhancer (2008) Science, 321, pp. 1346-1350. , doi:10.1126/science.1159974
  • Capra, J.A., Erwin, G.D., McKinsey, G., Rubenstein, J.L.R., Pollard, K.S., Many human accelerated regions are developmental enhancers (2013) Phil. Trans. R. Soc. B, 368, p. 20130025. , doi:10.1098/rstb.2013.0025
  • May, D., Large-scale discovery of enhancers from human heart tissue (2011) Nat. Genet, 44, pp. 89-93. , doi:10.1038/ng.1006
  • Kamm, G.B., López-Leal, R., Lorenzo, J.R., Franchini, L.F., A fast-evolving human NPAS3 enhancer gained reporter expression in the developing forebrain of transgenic mice (2013) Phil. Trans. R. Soc. B, 368, p. 20130019. , doi:10.1098/rstb.2013.0019
  • Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., Jaenisch, R., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering (2013) Cell, 153, pp. 910-918. , doi:10.1016/j.cell. 2013.04.025
  • Gratz, S.J., Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease (2013) Genetics, 194, pp. 1029-1035. , doi:10.1534/ genetics.113.152710
  • Cade, L., Highly efficient generation of heritable zebrafish gene mutations using homoand heterodimeric TALENs (2012) Nucleic Acids Res, 40, pp. 8001-8010. , doi:10.1093/nar/gks518
  • Sung, Y.H., Baek, I.J., Kim, D.H., Jeon, J., Lee, J., Lee, K., Jeong, D., Lee, H.W., Knockout mice created by TALEN-mediated gene targeting (2013) Nat. Biotechnol, 31, pp. 23-24. , doi:10.1038/nbt.2477
  • Ansai, S., Sakuma, T., Yamamoto, T., Ariga, H., Uemura, N., Takahashi, R., Kinoshita, M., Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases (2013) Genetics, 193, pp. 739-749. , doi:10.1534/genetics.112.147645
  • Jao, L.E., Wente, S.R., Chen, W., Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system (2013) Proc. Natl Acad. Sci. USA, 110, pp. 13904-13909. , doi:10.1073/pnas. 1308335110
  • Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Joung, J.K., Efficient genome editing in zebrafish using a CRISPR-Cas system (2013) Nat. Biotechnol, 31, pp. 227-229. , doi:10.1038/nbt.2501

Citas:

---------- APA ----------
Rubinstein, M. & de Souza, F.S.J. (2013) . Evolution of transcriptional enhancers and animal diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1632).
http://dx.doi.org/10.1098/rstb.2013.0017
---------- CHICAGO ----------
Rubinstein, M., de Souza, F.S.J. "Evolution of transcriptional enhancers and animal diversity" . Philosophical Transactions of the Royal Society B: Biological Sciences 368, no. 1632 (2013).
http://dx.doi.org/10.1098/rstb.2013.0017
---------- MLA ----------
Rubinstein, M., de Souza, F.S.J. "Evolution of transcriptional enhancers and animal diversity" . Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 368, no. 1632, 2013.
http://dx.doi.org/10.1098/rstb.2013.0017
---------- VANCOUVER ----------
Rubinstein, M., de Souza, F.S.J. Evolution of transcriptional enhancers and animal diversity. Philos. Trans. R. Soc. B Biol. Sci. 2013;368(1632).
http://dx.doi.org/10.1098/rstb.2013.0017