Artículo

Domené, S.; Bumaschny, V.F.; de Souza, F.S.J.; Franchini, L.F.; Nasif, S.; Low, M.J.; Rubinstein, M. "Enhancer turnover and conserved regulatory function in vertebrate evolution" (2013) Philosophical Transactions of the Royal Society B: Biological Sciences. 368(1632)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Mutations in regulatory regions including enhancers are an important source of variation and innovation during evolution. Enhancers can evolve by changes in the sequence, arrangement and repertoire of transcription factor binding sites, but whole enhancers can also be lost or gained in certain lineages in a process of turnover. The proopiomelanocortin gene (Pomc), which encodes a prohormone, is expressed in the pituitary and hypothalamus of all jawed vertebrates. We have previously described that hypothalamic Pomc expression in mammals is controlled by two enhancers- nPE1 and nPE2-that are derived from transposable elements and that presumably replaced the ancestral neuronal Pomc regulatory regions. Here, we show that nPE1 and nPE2, even though they are mammalian novelties with no homologous counterpart in other vertebrates, nevertheless can drive gene expression specifically to POMC neurons in the hypothalamus of larval and adult transgenic zebrafish. This indicates that when neuronal Pomc enhancers originated de novo during early mammalian evolution, the newly created cis- and trans-codes were similar to the ancestral ones. We also identify the neuronal regulatory region of zebrafish pomca and confirm that it is not homologous to the mammalian enhancers. Our work sheds light on the process of gene regulatory evolution by showing how a locus can undergo enhancer turnover and nevertheless maintain the ancestral transcriptional output.

Registro:

Documento: Artículo
Título:Enhancer turnover and conserved regulatory function in vertebrate evolution
Autor:Domené, S.; Bumaschny, V.F.; de Souza, F.S.J.; Franchini, L.F.; Nasif, S.; Low, M.J.; Rubinstein, M.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
Departamento de Fisiología y Biofísica, Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, United States
Palabras clave:Comparative genomics; Hypothalamus; Mammals; Proopiomelanocortin; Teleosts; Transgenic zebrafish; cyprinid; evolutionary biology; gene expression; hormone; mammal; mutation; neurology; turnover; POMC protein, zebrafish; proopiomelanocortin; zebrafish protein; animal; article; biology; comparative genomics; enhancer region; gene expression regulation; genetics; hypothalamus; immunohistochemistry; in situ hybridization; mammal; metabolism; molecular evolution; mutation; nerve cell; nucleotide sequence; teleost; transgenic animal; transgenic zebrafish; vertebrate; zebra fish; comparative genomics; hypothalamus; mammals; proopiomelanocortin; teleosts; transgenic zebrafish; Animals; Animals, Genetically Modified; Computational Biology; Conserved Sequence; Enhancer Elements, Genetic; Evolution, Molecular; Gene Expression Regulation; Immunohistochemistry; In Situ Hybridization; Mutation; Neurons; Pro-Opiomelanocortin; Vertebrates; Zebrafish; Zebrafish Proteins
Año:2013
Volumen:368
Número:1632
DOI: http://dx.doi.org/10.1098/rstb.2013.0027
Título revista:Philosophical Transactions of the Royal Society B: Biological Sciences
Título revista abreviado:Philos. Trans. R. Soc. B Biol. Sci.
ISSN:09628436
CODEN:PTRBA
CAS:proopiomelanocortin, 66796-54-1; POMC protein, zebrafish; Pro-Opiomelanocortin, 66796-54-1; Zebrafish Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09628436_v368_n1632_p_Domene

Referencias:

  • Carroll, S.B., Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution (2008) Cell, 134, pp. 25-36. , (doi:10. 1016/j.cell.2008.06.030)
  • Carey, M., The enhanceosome and transcriptional synergy (1998) Cell, 92, pp. 5-8. , (doi:10.1016/ S0092-8674(00)80893-4)
  • Swanson, C.I., Evans, N.C., Barolo, S., Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer (2010) Dev. Cell, 18, pp. 359-370. , (doi:10.1016/j. devcel.2009.12.026)
  • Ludwig, M.Z., Functional evolution of noncoding DNA (2002) Curr. Opin. Genet. Dev, 12, pp. 634-639. , (doi:10. 1016/S0959-437X(02)00355-6)
  • Nobrega, M.A., Ovcharenko, I., Afzal, V., Rubin, E.M., Scanning human gene deserts for long-range enhancers (2003) Science, 302, p. 413. , (doi:10.1126/ science.1088328)
  • Lettice, L.A., A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly (2003) Hum. Mol. Genet, 12, pp. 1725-1735. , (doi:10.1093/ hmg/ddg180)
  • Sagai, T., Hosoya, M., Mizushina, Y., Tamura, M., Shiroishi, T., Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb (2005) Development, 132, pp. 797-803. , (doi:10.1242/ dev.01613)
  • Irimia, M., Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints (2012) Genome Res, 22, pp. 2356-2367. , (doi:10.1101/gr.139725.112)
  • Marinic, M., Aktas, T., Ruf, S., Spitz, F., An integrated holo-enhancer unit defines tissue and gene specificity of the fgf8 regulatory landscape (2013) Dev. Cell, 24, pp. 530-542. , (doi:10.1016/j.devcel. 2013.01.025)
  • Kaessmann, H., Origins, evolution, and phenotypic impact of new genes (2010) Genome Res, 20, pp. 1313-1326. , (doi:10.1101/gr.101386.109)
  • Loots, G.G., Locksley, R.M., Blankespoor, C.M., Wang, Z.E., Miller, W., Rubin, E.M., Frazer, K.A., Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons (2000) Science, 288, pp. 136-140. , (doi:10.1126/science.288.5463.136)
  • Wasserman, W.W., Sandelin, A., Applied bioinformatics for the identification of regulatory elements (2004) Nat. Rev. Genet, 5, pp. 276-287. , (doi:10. 1038/nrg1315)
  • Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W.J., Mattick, J.S., Haussler, D., Ultraconserved elements in the human genome (2004) Science, 304, pp. 1321-1325. , (doi:10.1126/science.1098119)
  • Woolfe, A., Highly conserved non-coding sequences are associated with vertebrate development (2005) PLoS Biol, 3, pp. e7. , (doi:10.1371/journal. pbio.0030007)
  • Shin, J.T., Priest, J.R., Ovcharenko, I., Ronco, A., Moore, R.K., Burns, C.G., Macrae, C.A., Human-zebrafish noncoding conserved elements act in vivo to regulate transcription (2005) Nucleic Acids Res, 33, pp. 5437-5445. , (doi:10.1093/nar/gki853)
  • Pennacchio, L.A., In vivo enhancer analysis of human conserved non-coding sequences (2006) Nature, 444, pp. 499-502. , (doi:10.1038/nature05295)
  • Hedges, S.B., The origin and evolution of model organisms (2002) Nat. Rev. Genet, 3, pp. 838-849. , (doi:10. 1038/nrg929)
  • Prabhakar, S., Poulin, F., Shoukry, M., Afzal, V., Rubin, E.M., Couronne, O., Pennacchio, L.A., Close sequence comparisons are sufficient to identify human cis-regulatory elements (2006) Genome Res, 16, pp. 855-863. , (doi:10.1101/gr.4717506)
  • Plessy, C., Dickmeis, T., Chalmel, F., Strahle, U., Enhancer sequence conservation between vertebrates is favoured in developmental regulator genes (2005) Trends Genet, 21, pp. 207-210. , (doi:10.1016/j. tig.2005.02.006)
  • Woolfe, A., Elgar, G., Organization of conserved elements near key developmental regulators in vertebrate genomes (2008) Adv. Genet, 61, pp. 307-338. , (doi:10.1016/S0065-2660(07)00012-0)
  • Lindblad-Toh, K., A high-resolution map of human evolutionary constraint using 29 mammals (2011) Nature, 478, pp. 476-482. , (doi:10.1038/nature10530)
  • Visel, A., ChIP-seq accurately predicts tissue-specific activity of enhancers (2009) Nature, 457, pp. 854-858. , (doi:10.1038/nature07730)
  • Heintzman, N.D., Histone modifications at human enhancers reflect global cell-type-specific gene expression (2009) Nature, 459, pp. 108-112. , (doi:10. 1038/nature07829)
  • Zentner, G.E., Scacheri, P.C., The chromatin fingerprint of gene enhancer elements (2012) J. Biol. Chem. 287, 30, pp. 888-930. , 896, (doi:10.1074/ jbc.R111.296491)
  • Buecker, C., Wysocka, J., Enhancers as information integration hubs in development: Lessons from genomics (2012) Trends Genet, 28, pp. 276-284. , (doi:10.1016/j.tig.2012.02.008)
  • Blow, M.J., ChIP-Seq identification of weakly conserved heart enhancers (2010) Nat. Genet, 42, pp. 806-810. , (doi:10.1038/ng.650)
  • May, D., Large-scale discovery of enhancers from human heart tissue (2011) Nat. Genet, 44, pp. 89-93. , (doi:10.1038/ng.1006)
  • Lunyak, V.V., Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis (2007) Science, 317, pp. 248-251. , (doi:10.1126/science.1140871)
  • Pi, W., Zhu, X., Wu, M., Wang, Y., Fulzele, S., Eroglu, A., Ling, J., Tuan, D., Long-range function of an intergenic retrotransposon (2010) Proc. Natl Acad. Sci. USA, 107, pp. 12992-12997. , (doi:10.1073/pnas. 1004139107)
  • Loots, G.G., Kneissel, M., Keller, H., Baptist, M., Chang, J., Collette, N.M., Ovcharenko, D., Rubin, E.M., Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease (2005) Genome Res, 15, pp. 928-935. , (doi:10.1101/gr.3437105)
  • Rahimov, F., Disruption of an AP-2alpha binding site in an IRF6 enhancer is associated with cleft lip (2008) Nat. Genet, 40, pp. 1341-1347. , (doi:10.1038/ng.242)
  • Jeong, Y., Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein (2008) Nat. Genet, 40, pp. 1348-1353. , (doi:10.1038/ng.230)
  • Benko, S., Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence (2009) Nat. Genet, 41, pp. 359-364. , (doi:10.1038/ng.329)
  • Ghiasvand, N.M., Rudolph, D.D., Mashayekhi, M., Jat, B., Goldman, D., Glaser, T., Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease (2011) Nat. Neurosci, 14, pp. 578-586. , (doi:10.1038/nn.2798)
  • Sur, I.K., Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors (2012) Science, 338, pp. 1360-1363. , (doi:10. 1126/science.1228606)
  • Zhou, X., Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP (2012) Hum. Mol. Genet, 21, pp. 1325-1335. , (doi:10.1093/hmg/ddr569)
  • Pashos, E.E., Kague, E., Fisher, S., Evaluation of cis-regulatory function in zebrafish (2008) Brief Funct. Genomic Proteomic, 7, pp. 465-473. , (doi:10.1093/ bfgp/eln045)
  • de la Calle-Mustienes, E., Feijoo, C.G., Manzanares, M., Tena, J.J., Rodriguez-Seguel, E., Letizia, A., Allende, M.L., Gomez-Skarmeta, J.L., A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts (2005) Genome Res, 15, pp. 1061-1072. , (doi:10.1101/ gr.4004805)
  • McGaughey, D.M., Vinton, R.M., Huynh, J., Al-Saif, A., Beer, M.A., McCallion, A.S., Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b (2008) Genome Res, 18, pp. 252-260. , (doi:10.1101/gr.6929408)
  • Ritter, D.I., Li, Q., Kostka, D., Pollard, K.S., Guo, S., Chuang, J.H., The importance of being cis: Evolution of orthologous fish and mammalian enhancer activity (2010) Mol. Biol. Evol, 27, pp. 2322-2332. , (doi:10.1093/ molbev/msq128)
  • Chatterjee, S., Bourque, G., Lufkin, T., Conserved and non-conserved enhancers direct tissue specific transcription in ancient germ layer specific developmental control genes (2011) BMC Dev. Biol, 11, p. 63. , (doi:10.1186/1471-213X-11-63)
  • Shen, Y., A map of the cis-regulatory sequences in the mouse genome (2012) Nature, 488, pp. 116-120. , (doi:10.1038/nature11243)
  • Fisher, S., Grice, E.A., Vinton, R.M., Bessling, S.L., McCallion, A.S., Conservation of RET regulatory function from human to zebrafish without sequence similarity (2006) Science, 312, pp. 276-279. , (doi:10.1126/ science.1124070)
  • Ariza-Cosano, A., Visel, A., Pennacchio, L.A., Fraser, H.B., Gomez-Skarmeta, J.L., Irimia, M., Bessa, J., Differences in enhancer activity in mouse and zebrafish reporter assays are often associated with changes in gene expression (2012) BMC Genomics, 13, p. 713. , (doi:10.1186/1471-2164-13-713)
  • Taher, L., McGaughey, D.M., Maragh, S., Aneas, I., Bessling, S.L., Miller, W., Nobrega, M.A., Ovcharenko, I., Genome-wide identification of conserved regulatory function in diverged sequences (2011) Genome Res, 21, pp. 1139-1149. , (doi:10. 1101/gr.119016.110)
  • Santangelo, A.M., de Souza, F.S., Franchini, L.F., Bumaschny, V.F., Low, M.J., Rubinstein, M., Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene (2007) PLoS Genet, 3, pp. 1813-1826. , (doi:10.1371/journal.pgen.0030166)
  • Franchini, L.F., Lopez-Leal, R., Nasif, S., Beati, P., Gelman, D.M., Low, M.J., de Souza, F.J., Rubinstein, M., Convergent evolution of two mammalian neuronal enhancers by sequential exaptation of unrelated retroposons (2011) Proc. Natl Acad. Sci. USA, 108, pp. 15270-15275. , (doi:10.1073/pnas.1104997108)
  • Raffin-Sanson, M.L., de Keyzer, Y., Bertagna, X., Proopiomelanocortin, a polypeptide precursor with multiple functions: From physiology to pathological conditions (2003) Eur. J. Endocrinol, 149, pp. 79-90. , (doi:10. 1530/eje.0.1490079)
  • Jenks, B.G., Kidane, A.H., Scheenen, W.J., Roubos, E.W., Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis (2007) Neuroendocrinology, 85, pp. 177-185. , (doi:10.1159/000101434)
  • Millington, G.W., The role of proopiomelanocortin (POMC) neurones in feeding behaviour (2007) Nutr. Metab. (Lond.), 4, p. 18. , (doi:10.1186/ 1743-7075-4-18)
  • de Souza, F.S., Bumaschny, V.F., Low, M.J., Rubinstein, M., Subfunctionalization of expression and peptide domains following the ancient duplication of the proopiomelanocortin gene in teleost fishes (2005) Mol. Biol. Evol, 22, pp. 2417-2427. , (doi:10.1093/ molbev/msi236)
  • Liu, N.A., Huang, H., Yang, Z., Herzog, W., Hammerschmidt, M., Lin, S., Melmed, S., Pituitary corticotroph ontogeny and regulation in transgenic zebrafish (2003) Mol. Endocrinol, 17, pp. 959-966. , (doi:10. 1210/me.2002-0392)
  • Herzog, W., Zeng, X., Lele, Z., Sonntag, C., Ting, J.W., Chang, C.Y., Hammerschmidt, M., Adenohypophysis formation in the zebrafish and its dependence on sonic hedgehog (2003) Dev. Biol, 254, pp. 36-49. , (doi:10.1016/S0012-1606(02)00124-0)
  • Bumaschny, V.F., de Souza, F.S., Lopez, L.R.A., Santangelo, A.M., Baetscher, M., Levi, D.H., Low, M.J., Rubinstein, M., Transcriptional regulation of pituitary POMC is conserved at the vertebrate extremes despite great promoter sequence divergence (2007) Mol. Endocrinol, 21, pp. 2738-2749. , (doi:10.1210/me.2006-0557)
  • Liu, B., Hammer, G.D., Rubinstein, M., Mortrud, M., Low, M.J., Identification of DNA elements cooperatively activating proopiomelanocortin gene expression in the pituitary glands of transgenic mice (1992) Mol. Cell Biol, 12, pp. 3978-3990
  • Jenks, B.G., Regulation of proopiomelanocortin gene expression: An overview of the signaling cascades, transcription factors, and responsive elements involved (2009) Ann. N.Y. Acad. Sci, 1163, pp. 17-30. , (doi:10.1111/j.1749-6632.2008.03620.x)
  • Langlais, D., Couture, C., Sylvain-Drolet, G., Drouin, J., A pituitary-specific enhancer of the POMC gene with preferential activity in corticotrope cells (2011) Mol. Endocrinol, 25, pp. 348-359. , (doi:10.1210/me. 2010-0422)
  • Jansen, E.J., Holling, T.M., van Herp, F., Martens, G.J., Transgene-driven protein expression specific to the intermediate pituitary melanotrope cells of Xenopus laevis (2002) FEBS Lett, 516, pp. 201-207. , (doi:10.1016/ S0014-5793(02)02523-1)
  • Young, J.I., Otero, V., Cerdan, M.G., Falzone, T.L., Chan, E.C., Low, M.J., Rubinstein, M., Authentic cell-specific and developmentally regulated expression of proopiomelanocortin genomic fragments in hypothalamic and hindbrain neurons of transgenic mice (1998) J. Neurosci, 18, pp. 6631-6640
  • de Souza, F.S., Santangelo, A.M., Bumaschny, V., Avale, M.E., Smart, J.L., Low, M.J., Rubinstein, M., Identification of neuronal enhancers of the proopiomelanocortin gene by transgenic mouse analysis and phylogenetic footprinting (2005) Mol. Cell. Biol, 25, pp. 3076-3086. , (doi:10.1128/MCB.25.8. 3076-3086.2005)
  • Franchini, L.F., de Souza, F.S., Low, M.J., Rubinstein, M., Positive selection of co-opted mobile genetic elements in a mammalian gene: If you can't beat them, join them (2012) Mob. Genet. Elements, 2, pp. 106-109. , (doi:10.4161/mge.20267)
  • Thisse, C., Thisse, B., Schilling, T.F., Postlethwait, J.H., Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos (1993) Development, 119, pp. 1203-1215
  • Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., Frisch, M., Werner, T., MatInspector and beyond: Promoter analysis based on transcription factor binding sites (2005) Bioinformatics, 21, pp. 2933-2942. , (doi:10.1093/ bioinformatics/bti473)
  • Forlano, P.M., Cone, R.D., Conserved neurochemical pathways involved in hypothalamic control of energy homeostasis (2007) J. Comp. Neurol, 505, pp. 235-248. , (doi:10.1002/cne.21447)
  • Lohr, H., Hammerschmidt, M., Zebrafish in endocrine systems: Recent advances and implications for human disease (2011) Annu. Rev. Physiol, 73, pp. 183-211. , (doi:10.1146/annurev-physiol-012110-142320)
  • Schwartz, S., Zhang, Z., Frazer, K.A., Smit, A., Riemer, C., Bouck, J., Gibbs, R., Miller, W., PipMaker: A web server for aligning two genomic DNA sequences (2000) Genome Res, 10, pp. 577-586. , (doi:10. 1101/gr.10.4.577)
  • Gonzalez-Nunez, V., Gonzalez-Sarmiento, R., Rodriguez, R.E., Identification of two proopiomelanocortin genes in zebrafish (Danio rerio) (2003) Brain Res. Mol. Brain Res, 120, pp. 1-8. , (doi:10.1016/j.molbrainres. 2003.09.012)
  • Birnbaum, R.Y., Coding exons function as tissue-specific enhancers of nearby genes (2012) Genome Res, 22, pp. 1059-1068. , (doi:10.1101/gr.133546.111)
  • Howe, K., The zebrafish reference genome sequence and its relationship to the human genome (2013) Nature, 496, pp. 498-503. , (doi:10.1038/ nature12111)
  • Eichenlaub, M.P., Ettwiller, L., De novo genesis of enhancers in vertebrates (2011) PLoS Biol, 9, pp. e1001188. , (doi:10.1371/journal.pbio.1001188)
  • Gilbert, N., Labuda, D., Evolutionary inventions and continuity of CORE-SINEs in mammals (2000) J. Mol. Biol, 298, pp. 365-377. , (doi:10.1006/jmbi.2000.3695)
  • Gilbert, N., Labuda, D., CORE-SINEs: Eukaryotic short interspersed retroposing elements with common sequence motifs (1999) Proc. Natl Acad. Sci. USA, 96, pp. 2869-2874. , (doi:10.1073/pnas.96.6.2869)
  • Smit, A.F., Identification of a new, abundant superfamily of mammalian LTR-transposons (1993) Nucleic Acids Res, 21, pp. 1863-1872. , (doi:10.1093/ nar/21.8.1863)
  • Gotea, V., Visel, A., Westlund, J.M., Nobrega, M.A., Pennacchio, L.A., Ovcharenko, I., Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers (2010) Genome Res, 20, pp. 565-577. , (doi:10.1101/gr.104471.109)
  • Narlikar, L., Sakabe, N.J., Blanski, A.A., Arimura, F.E., Westlund, J.M., Nobrega, M.A., Ovcharenko, I., Genome-wide discovery of human heart enhancers (2010) Genome Res, 20, pp. 381-392. , (doi:10.1101/gr.098657.109)
  • Bumaschny, V.F., Yamashita, M., Casas-Cordero, R., Otero-Corchon, V., de Souza, F.S., Rubinstein, M., Low, M.J., Obesity-programmed mice are rescued by early genetic intervention (2012) J. Clin. Invest, 122, pp. 4203-4212. , (doi:10.1172/JCI62543)
  • Song, Y., Cone, R.D., Creation of a genetic model of obesity in a teleost (2007) FASEB J, 21, pp. 2042-2049. , (doi:10.1096/fj.06-7503com)
  • Song, Y., Golling, G., Thacker, T.L., Cone, R.D., Agouti-related protein (AGRP) is conserved and regulated by metabolic state in the zebrafish, Danio rerio (2003) Endocrine, 22, pp. 257-265. , (doi:10.1385/ ENDO:22:3:257)
  • Canosa, L.F., Cerda-Reverter, J.M., Peter, R.E., Brain mapping of three somatostatin encoding genes in the goldfish (2004) J. Comp. Neurol, 474, pp. 43-57. , (doi:10. 1002/cne.20097)
  • Castro, A., Becerra, M., Manso, M.J., Tello, J., Sherwood, N.M., Anadon, R., Distribution of growth hormone-releasing hormone-like peptide: Immunoreactivity in the central nervous system of the adult zebrafish (Danio rerio) (2009) J. Comp. Neurol, 513, pp. 685-701. , (doi:10.1002/cne.21977)
  • Liu, Q., Chen, Y., Copeland, D., Ball, H., Duff, R.J., Rockich, B., Londraville, R.L., Expression of leptin receptor gene in developing and adult zebrafish (2010) Gen. Comp. Endocrinol, 166, pp. 346-355. , (doi:10.1016/j.ygcen. 2009.11.015)
  • Cerda-Reverter, J.M., Agulleiro, M.J., Rg, R., Sanchez, E., Ceinos, R., Rotllant, J., Fish melanocortin system (2011) Eur. J. Pharmacol, 660, pp. 53-60. , (doi:10.1016/j. ejphar.2010.10.108)
  • Cerda-Reverter, J.M., Peter, R.E., Endogenous melanocortin antagonist in fish: Structure, brain mapping, and regulation by fasting of the goldfish agouti-related protein gene (2003) Endocrinology, 144, pp. 4552-4561. , (doi:10.1210/en.2003-0453)
  • Cerda-Reverter, J.M., Schioth, H.B., Peter, R.E., The central melanocortin system regulates food intake in goldfish (2003) Regul. Pept, 115, pp. 101-113. , (doi:10.1016/ S0167-0115(03)00144-7)
  • Schjolden, J., Schioth, H.B., Larhammar, D., Winberg, S., Larson, E.T., Melanocortin peptides affect the motivation to feed in rainbow trout (Oncorhynchus mykiss) (2009) Gen. Comp. Endocrinol, 160, pp. 134-138. , (doi:10.1016/j.ygcen.2008.11.003)
  • Mukherjee, A., Subhedar, N.K., Ghose, A., Ontogeny of the cocaine- and amphetamineregulated transcript (CART) neuropeptide system in the brain of zebrafish, Danio rerio (2012) J. Comp. Neurol, 520, pp. 770-797. , (doi:10.1002/cne.22779)
  • Yokobori, E., Azuma, M., Nishiguchi, R., Kang, K.S., Kamijo, M., Uchiyama, M., Matsuda, K., Neuropeptide Y stimulates food intake in the zebrafish, Danio rerio (2012) J. Neuroendocrinol, 24, pp. 766-773. , (doi:10.1111/j.1365-2826.2012.02281.x)
  • Tessmar-Raible, K., Raible, F., Christodoulou, F., Guy, K., Rembold, M., Hausen, H., Arendt, D., Conserved sensory-neurosecretory cell types in annelid and fish forebrain: Insights into hypothalamus evolution (2007) Cell, 129, pp. 1389-1400. , (doi:10.1016/j.cell.2007.04.041)
  • Kurrasch, D.M., Nevin, L.M., Wong, J.S., Baier, H., Ingraham, H.A., Neuroendocrine transcriptional programs adapt dynamically to the supply and demand for neuropeptides as revealed in NSF mutant zebrafish (2009) Neural Dev, 4, p. 22. , (doi:10.1186/ 1749-8104-4-22)
  • Dores, R.M., Baron, A.J., Evolution of POMC: Origin, phylogeny, posttranslational processing, and the melanocortins (2011) Ann. N.Y. Acad. Sci, 1220, pp. 34-48. , (doi:10.1111/j.1749-6632.2010.05928.x)
  • Ficele, G., Heinig, J.A., Kawauchi, H., Youson, J.H., Keeley, F.W., Wright, G.M., Spatial and temporal distribution of proopiomelanotropin and proopiocortin mRNA during the life cycle of the sea lamprey: A qualitative and quantitative in situ hybridisation study (1998) Gen. Comp. Endocrinol, 110, pp. 212-225. , (doi:10.1006/gcen.1998.7071)
  • Chiba, A., Marked distributional difference of alpha-melanocyte-stimulating hormone (alpha- MSH)-like immunoreactivity in the brain between two elasmobranchs (Scyliorhinus torazame and Etmopterus brachyurus): An immunohistochemical study (2001) Gen. Comp. Endocrinol, 122, pp. 287-295. , (doi:10.1006/gcen.2001.7628)
  • Chen, W.J., Orti, G., Meyer, A., Novel evolutionary relationship among four fish model systems (2004) Trends Genet, 20, pp. 424-431. , (doi:10.1016/j.tig.2004.07.005)

Citas:

---------- APA ----------
Domené, S., Bumaschny, V.F., de Souza, F.S.J., Franchini, L.F., Nasif, S., Low, M.J. & Rubinstein, M. (2013) . Enhancer turnover and conserved regulatory function in vertebrate evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1632).
http://dx.doi.org/10.1098/rstb.2013.0027
---------- CHICAGO ----------
Domené, S., Bumaschny, V.F., de Souza, F.S.J., Franchini, L.F., Nasif, S., Low, M.J., et al. "Enhancer turnover and conserved regulatory function in vertebrate evolution" . Philosophical Transactions of the Royal Society B: Biological Sciences 368, no. 1632 (2013).
http://dx.doi.org/10.1098/rstb.2013.0027
---------- MLA ----------
Domené, S., Bumaschny, V.F., de Souza, F.S.J., Franchini, L.F., Nasif, S., Low, M.J., et al. "Enhancer turnover and conserved regulatory function in vertebrate evolution" . Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 368, no. 1632, 2013.
http://dx.doi.org/10.1098/rstb.2013.0027
---------- VANCOUVER ----------
Domené, S., Bumaschny, V.F., de Souza, F.S.J., Franchini, L.F., Nasif, S., Low, M.J., et al. Enhancer turnover and conserved regulatory function in vertebrate evolution. Philos. Trans. R. Soc. B Biol. Sci. 2013;368(1632).
http://dx.doi.org/10.1098/rstb.2013.0027