Lounnas, M.; Correa, A.C.; Vázquez, A.A.; Dia, A.; Escobar, J.S.; Nicot, A.; Arenas, J.; Ayaqui, R.; Dubois, M.P.; Gimenez, T.; Gutiérrez, A.; González-Ramírez, C.; Noya, O.; Prepelitchi, L.; Uribe, N.; Wisnivesky-Colli, C.; Yong, M.; David, P. (...) Hurtrez-Boussès, S."Self-fertilization, long-distance flash invasion and biogeography shape the population structure of Pseudosuccinea columella at the worldwide scale" (2017) Molecular Ecology. 26(3):887-903
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self-fertilizing species. We here focus on the self-fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none-to-low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large-scale flash invasion may affect the spread of fasciolosis. © 2016 John Wiley & Sons Ltd


Documento: Artículo
Título:Self-fertilization, long-distance flash invasion and biogeography shape the population structure of Pseudosuccinea columella at the worldwide scale
Autor:Lounnas, M.; Correa, A.C.; Vázquez, A.A.; Dia, A.; Escobar, J.S.; Nicot, A.; Arenas, J.; Ayaqui, R.; Dubois, M.P.; Gimenez, T.; Gutiérrez, A.; González-Ramírez, C.; Noya, O.; Prepelitchi, L.; Uribe, N.; Wisnivesky-Colli, C.; Yong, M.; David, P.; Loker, E.S.; Jarne, P.; Pointier, J.P.; Hurtrez-Boussès, S.
Filiación:MIVEGEC, UMR IRD 224 CNRS 5290 UM1-UM2, 911 Avenue Agropolis, BP 64501, Montpellier Cedex 5, 34394, France
Laboratorio de Malacología, Instituto de Medicina Tropical Pedro Kourí, Apartado Postal 601, Marianao 13, La Habana, Cuba
Vidarium Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur #50-67, Medellín, Colombia
Facultad de Biología Marina, Universidad Científica del Sur, Lima, Peru
Departamento de Microbiología y Patología de la, Facultad de Medicina de la Universidad Nacional de San Agustín, Arequipa, Peru
Centre d'Ecologie Fonctionnelle et d'Evolution, UMR 5175, CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE, 1919 route de Mende, Montpellier Cedex 5, 34293, France
Departamento de Parasitología, Facultad de Ciencias Veterinarias, Universidad Nacional de Asunción, Casilla 1061, San Lorenzo, Paraguay
Laboratorio de Investigaciones Parasitológicas ‘Dr Jesús Moreno Rangel’ Cátedra de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia y Bioanálisis, Universidad de los Andes, Urb. Campo de Oro, Mérida, 5101, Venezuela
Sección de Biohelmintiasis, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela y Centro para Estudios Sobre Malaria, Instituto de Altos Estudios ‘Dr. Arnoldo Gabaldón’-Instituto Nacional de Higiene ‘Rafael Rangel’ del Ministerio del Poder Popular para la Salud, Caracas, Venezuela
Unidad de Ecología de Reservorios y Vectores de Parásitos, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 4 piso, Laboratorio 55, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
Escuela de Bacteriología y Laboratorio Clínico, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM 87131, United States
USR 3278 CNRS-EPHE, CRIOBE Université de Perpignan, Perpignan-Cedex, 68860, France
Département de Biologie-Ecologie, Faculté des Sciences – cc 046, Université Montpellier, 4 Place Eugène Bataillon, Montpellier Cedex 5, 34095, France
Palabras clave:biological invasion; Fasciola hepatica; liver fluke; microsatellite; mitochondrial markers; population genetics; Pseudosuccinea columella; self-fertilization; microsatellite DNA; animal; genetics; genotype; haplotype; introduced species; mitochondrial gene; North America; population genetics; self fertilization; snail; South America; Animals; Genes, Mitochondrial; Genetics, Population; Genotype; Haplotypes; Introduced Species; Microsatellite Repeats; North America; Self-Fertilization; Snails; South America
Página de inicio:887
Página de fin:903
Título revista:Molecular Ecology
Título revista abreviado:Mol. Ecol.


  • Altermatt, F., Ebert, D., Genetic diversity of Daphnia magna populations enhances resistance to parasites (2008) Ecology Letters, 11, pp. 918-928
  • Baker, H.G., Support for Baker's law-as a rule (1967) Evolution, 21, pp. 853-856
  • Barrett, S.C.H., Foundations of invasion genetics: the Baker and Stebbins legacy (2014) Molecular Ecology, pp. 1-15
  • Beisel, J.N., Lévêque, C., (2010) Introduction d'espèces dans les milieux aquatiques: Faut-il avoir peur des invasions biologiques?, , Editions Quae, Versailles Cedex
  • Belkhir, K., Borsa, P., Goudet, J., Chikhi, L., Bonhomme, F., (1998) GENETIX, software for population genetic data analysis, , Laboratoire Génome et Populations, CNRS UPR 9060,, Université de Montpellier II, Montpellier, France
  • Bock, D.G., Caseys, C., Cousens, R.D., What we still don't know about invasion genetics (2014) Molecular Ecology, 24, pp. 2277-2297
  • Boray, J., Fraser, G., Williams, J., Wilson, J., The occurrence of the snail Lymnaea columella on gazing areas in New South Wales and studies on its susceptibility to Fasciola hepatica (1985) Australian Veterinary Journal, 62, pp. 4-6
  • Bousset, L., Pointier, J.P., David, P., Jarne, P., Neither variation loss, nor change in selfing rate is associated with the worldwide invasion of Physa acuta from its native North America (2014) Biological Invasions, 16, pp. 1769-1783
  • Brown, D., (1994) Freshwater Snails of Africa and Their Medical Importance, , Taylor & Francis, London, UK
  • Burgarella, C., Gayral, P., Ballenghien, M., Molecular evolution of freshwater snails with contrasting mating systems (2015) Molecular Biology and Evolution, 32, pp. 2403-2416
  • Campbell, G., Noble, L.R., Rollinson, D., Low genetic diversity in a snail intermediate host (Biomphalaria pfeifferi Krass, 1848) and schistosomiasis transmission in the Senegal River Basin (2010) Molecular Ecology, 19, pp. 241-256
  • Chapuis, E., Trouvé, S., Facon, B., Degen, L., Goudet, J., High quantitative and no molecular differentiation of a freshwater snail (Galba truncatula) between temporary and permanent water habitats (2007) Molecular Ecology, 16, pp. 3484-3496
  • Charbonnel, N., Angers, B., Rasatavonjizay, R., The influence of mating system, demography, parasites and colonization on the population structure of Biomphalaria pfeifferi in Madagascar (2002) Molecular Ecology, 11, pp. 2213-2228
  • Charlesworth, D., Willis, J.H., The genetics of inbreeding depression (2009) Nature Reviews Genetics, 10, pp. 783-796
  • Charlesworth, D., Wright, S.I., Breeding systems and genome evolution (2001) Current Opinion in Genetics and Development, 11, pp. 685-690
  • Charlesworth, B., Morgan, M.T., Charlesworth, D., The effect of deleterious mutations on neutral molecular variation (1993) Genetics, 134, pp. 1289-1303
  • Correa, A., Escobar, J., Durand, P., Bridging gaps in the molecular phylogeny of the Lymnaeidae (Gastropoda: Pulmonata), vectors of Fascioliasis (2010) BMC Evolutionary Biology, 10, p. 381
  • Cowie, R.H., Hayes, K.A., Tran, C.T., Meyer, W.M., The horticultural industry as a vector of alien snails and slugs: widespread invasions in Hawaii (2008) International Journal of Pest Management, 54, pp. 267-276
  • Cristescu, M.E., Genetic reconstructions of invasion history (2015) Molecular Ecology, 24, pp. 2212-2225
  • Crnokrak, P., Barrett, S.C.H., Purging the genetic load: a review of the experimental evidence (2002) Evolution, 56, pp. 2347-2358
  • David, P., Pujol, B., Viard, F., Castella, V., Goudet, J., Reliable selfing rate estimates from imperfect population genetic data (2007) Molecular Ecology, 16, pp. 2474-2487
  • Dillon, R.T., (2000) The Ecology of Freshwater Molluscs, , Cambridge University Press, Cambridge, UK
  • Djuikwo-Teukeng, F.F., Njiokou, F., Nkengazong, L., Strong genetic structure in Cameroonian populations of Bulinus truncatus (Gastropoda: Planorbidae), intermediate host of Schistosoma haematobium (2011) Infection, Genetics and Evolution, 11, pp. 17-22
  • Dlugosch, K.M., Parker, I.M., Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions (2008) Molecular Ecology, 17, pp. 431-449
  • Duggan, I.C., The freshwater aquarium trade as a vector for incidental invertebrate fauna (2010) Biological Invasions, 12, pp. 3757-3770
  • Dybdahl, M.F., Drown, D.M., The absence of genotypic diversity in a successful parthenogenetic invader (2011) Biological Invasions, 13, pp. 1663-1672
  • Dybdahl, M.F., Kane, S.L., Adaptation vs. phenotypic plasticity in the success of a clonal invader (2005) Ecology, 86, pp. 1592-1601
  • Ellegren, H., Microsatellite evolution: a battle between replication slippage and point mutation (2002) Trends in Genetics, 18, p. 70
  • Ellison, A., Cable, J., Consuegra, S., Best of both worlds? Association between outcrossing and parasite loads in a selfing fish (2011) Evolution, 65, pp. 3021-3026
  • Elton, C.S., (1958) The Ecology of Invasions by Plants and Animals, 18. , Methuen, London
  • Escobar, J.S., Auld, J.R., Correa, A.C., Patterns of mating-system evolution in hermaphroditic animals: correlations among selfing rate, inbreeding depression, and the timing of reproduction (2011) Evolution, 65, pp. 1233-1253
  • Estoup, A., Guillemaud, T., Reconstructing routes of invasion using genetic data: why, how and so what? (2010) Molecular Ecology, 19, pp. 4113-4130
  • Facon, B., Pointier, J.-P., Glaubrecht, M., A molecular phylogeography approach to biological invasions of the New World by parthenogenetic Thiarid snails (2003) Molecular Ecology, 12, pp. 3027-3039
  • Facon, B., Jarne, P., Pointier, J.P., David, P., Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance (2005) Journal of Evolutionary Biology, 18, pp. 524-535
  • Facon, B., Pointier, J.-P., Jarne, P., Sarda, V., David, P., High genetic variance in life-history strategies within invasive populations by way of multiple introductions (2008) Current Biology, 18, pp. 363-367
  • Facon, B., Hufbauer, R.A., Tayeh, A., Inbreeding depression is purged in the invasive insect Harmonia axyridis (2011) Current Biology, 21, pp. 424-427
  • Fernandez-Calienes, A., Fraga, J., Pointier, J.-P., Detection and genetic distance of resistant populations of Pseudosuccinea columella (Mollusca: Lymnaeidae) to Fasciola hepatica (Trematoda: Digenea) using RAPD markers (2004) Acta Tropica, 92, pp. 83-87
  • Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates (1994) Molecular Marine Biology and Biotechnology, 3, pp. 294-299
  • Gao, H., Williamson, S., Bustamante, C.D., A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data (2007) Genetics, 176, pp. 1635-1651
  • Glémin, S., Galtier, N., Genome evolution in outcrossing versus selfing versus asexual species (2012) Methods in Molecular Biology, 856, pp. 311-335
  • Glémin, S., Muyle, A., Mating systems and selection efficacy: a test using chloroplastic sequence data in Angiosperms (2014) Journal of Evolutionary Biology, 27, pp. 1386-1399
  • Goudet, J., (2003) Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters, (1995). ,, Available from, Updated from Goudet
  • Grabner, D.S., Mohamed, F., Nachev, M., Invasion biology meets parasitology: a case study of parasite spill-back with Egyptian Fasciola gigantica in the invasive snail Pseudosuccinea columella (2014) PLoS One, 9
  • Gutiérrez, A., Pointier, J.-P., Fraga, J., Fasciola hepatica: identification of molecular markers for resistant and susceptible Pseudosuccinea columella snail hosts (2003) Experimental Parasitology, 105, pp. 211-218
  • Gutiérrez, A., Vázquez, A.A., Hevia, Y., First report of larval stages of Fasciola hepatica in a wild population of Pseudosuccinea columella from Cuba and the Caribbean (2011) Journal of Helminthology, 85, pp. 109-111
  • Hartl, D., Clark, H., (1997) Principles of Population Genetics, , Sinauer, Sunderland, Massachusetts
  • Haudry, A., Cenci, A., Guilhaumon, C., Mating system and recombination affect molecular evolution in four Triticeae species (2008) Genetics Research, 90, pp. 97-109
  • Holland, B.S., Dawson, M.N., Crow, G.L., Hofmann, D.K., Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands (2004) Marine Biology, 145, pp. 1119-1128
  • Huelsenbeck, J.P., Ronquist, F., MrBayes: Bayesian inference of phylogenetic trees (2001) Bioinformatics, 17, pp. 754-755
  • Hulme, P.E., Trade, transport and trouble: managing invasive species pathways in an era of globalization (2009) Journal of Applied Ecology, 46, pp. 10-18
  • Huson, D.H., Bryant, D., Application of phylogenetic networks in evolutionary studies (2006) Molecular Biology and Evolution, 23, pp. 254-267
  • Ingvarsson, P.K., A metapopulation perspective on genetic diversity and differentiation in partially self-fertilizing plants (2002) Evolution, 56, pp. 2368-2373
  • Jarne, P., Mating system, bottlenecks and genetic polymorphism in hermaphroditic animals (1995) Genetical Research, 65, pp. 193-207
  • Jarne, P., David, P., Quantifying inbreeding in natural populations of hermaphroditic organisms (2008) Heredity, 100, pp. 431-439
  • Jarne, P., Lagoda, P.J., Microsatellites, from molecules to populations and back (1996) Trends in Ecology and Evolution, 11, pp. 424-429
  • Jarne, P., Städler, T., Population genetic structure and mating system evolution in freshwater pulmonates (1995) Experientia, 51, pp. 482-497
  • Jensen, J.L., Bohonak, A.J., Kelley, S.T., Isolation by distance, web service (2005) BMC Genetics, 6, p. 13
  • Jombart, T., Devillard, S., Balloux, F., Discriminant analysis of principal components: a new method for the analysis of genetically structured populations (2010) BMC Genetics, 11, p. 94
  • Kalinowski, S.T., Hp-Rare 1.0: a computer program for performing rarefaction on measures of allelic richness (2005) Molecular Ecology Notes, 5, pp. 187-189
  • King, K.C., Lively, C.M., Does genetic diversity limit disease spread in natural host populations? (2012) Heredity, 109, pp. 199-203
  • Kliber, A., Eckert, C.G., Interaction between founder effect and selection during biological invasion in an aquatic plant (2005) Evolution, 59, pp. 1900-1913
  • Kolar, C.S., Lodge, D.M., Progress in invasion biology: predicting invaders (2001) Trends in Ecology and Evolution, 16, pp. 199-204
  • Kolbe, J.J., Glor, R.E., Rodríguez Schettino, L., Genetic variation increases during biological invasion by a Cuban lizard (2004) Nature, 431, pp. 177-181
  • Kopp, K.C., Wolff, K., Jokela, J., Natural range expansion and human-assisted introduction leave different genetic signatures in a hermaphroditic freshwater snail (2012) Evolutionary Ecology, 26, pp. 483-498
  • Lawson Handley, L.J., Estoup, A., Evans, D.M., Ecological genetics of invasive alien species (2011) BioControl, 56, pp. 409-428
  • Librado, P., Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data (2009) Bioinformatics (Oxford, England), 25, pp. 1451-1452
  • Liebl, A.L., Schrey, A.W., Richards, C.L., Martin, L.B., Patterns of DNA methylation throughout a range expansion of an introduced songbird (2013) Integrative and Comparative Biology, 53, pp. 351-358
  • Liu, J., Dong, M., Miao, S.L., Invasive alien plants in China: role of clonality and geographical origin (2006) Biological Invasions, 8, pp. 1461-1470
  • Lively, C.M., The effect of host genetic diversity on disease spread (2010) The American Naturalist, 175, pp. E149-E152
  • Löytynoja, A., Goldman, N., webPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser (2010) BMC Bioinformatics, 11, p. 579
  • Mavárez, J., Steiner, C., Pointier, J.-P., Jarne, P., Evolutionary history and phylogeography of the schistosome-vector freshwater snail Biomphalaria glabrata based on nuclear and mitochondrial DNA sequences (2002) Heredity, 89, pp. 266-272
  • Meirmans, P.G., Van Tienderen, P.H., GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms (2004) Molecular Ecology Notes, 4, pp. 792-794
  • Mergeay, J., Verschuren, D., De Meester, L., Invasion of an asexual American water flea clone throughout Africa and rapid displacement of a native sibling species (2006) Proceedings of the Royal Society of London, 273, pp. 2839-2844
  • Meunier, C., Tirard, C., Hurtrez-Boussès, S., Lack of molluscan host diversity and the transmission of an emerging parasitic disease in Bolivia (2001) Molecular Ecology, 10, pp. 1333-1340
  • Meunier, C., Hurtrez-Bousses, S., Durand, P., Rondelaud, D., Renaud, F., Small effective population sizes in a widespread selfing species, Lymnaea truncatula (Gastropoda: Pulmonata) (2004) Molecular Ecology, 13, pp. 2535-2543
  • Mundt, C.C., Use of multiline cultivars and cultivar mixtures for disease management (2002) Annual Review of Phytopathology, 40, pp. 381-410
  • Nei, M., (1987) Molecular Evolutionary Genetics, , Columbia University Press, New York
  • Ng, T.H., Tan, S.K., Wong, W.H., Molluscs for sale: assessment of freshwater gastropods and bivalves in the ornamental pet trade (2016) PLoS One, 11
  • Nicot, A., Dubois, M.-P., Debain, C., David, P., Jarne, P., Characterization of 15 microsatellite loci in the pulmonate snail Pseudosuccinea columella (Mollusca, Gastropoda) (2008) Molecular Ecology Resources, 8, pp. 1281-1284
  • Oliveira, S.M., Fujii, T.U., SpositoFilha, E., Martins, A.M.C.R.P.F., Ocorrência De Lymnaea columella Say, 1817 Infectada naturalmente por Fasciola hepatica (Linnaeus, 1758) no Vale do Ribeira, São Paulo, Brasil (2002) Arquivos do Instituto Biológico (Sao Paulo), 69, pp. 29-37
  • Perrings, C., Dehnen-Schmutz, K., Touza, J., Williamson, M., How to manage biological invasions under globalization (2005) Trends in Ecology and Evolution, 20, pp. 212-215
  • Pigneur, L.-M., Marescaux, J., Roland, K., Phylogeny and androgenesis in the invasive Corbicula clams (Bivalvia, Corbiculidae) in Western Europe (2011) BMC Evolutionary Biology, 11, p. 147
  • Pigneur, L.-M., Etoundi, E., Aldridge, D.C., Genetic uniformity and long-distance clonal dispersal in the invasive androgenetic Corbicula clams (2014) Molecular Ecology, 23, pp. 5102-5116
  • Poulin, J., Sakai, A., Weller, S.G., Nguyen, T., Plasticity, precipitation, and invasiveness in the fire-promoting grass (2007) American Journal of Botany, 94, pp. 533-541
  • Prepelitchi, L., Petrokovsky, S., Kleiman, F., Population structure and dynamics of Lymnaea columella (Say, 1817) (Gastropoda: Lymnaeidae) in Wetlands of Northeastern Argentina (2011) Zoological Studies, 50, pp. 164-176
  • Pritchard, J.K., Stephens, M., Donnelly, P., Inference of population structure using multilocus genotype data (2000) Genetics, 155, pp. 945-959
  • (2011) R: a language and environment for statistical computing, , R Foundation for Statistical Computing, Vienna, Austria
  • Remigio, E.A., Blair, D., Molecular systematics of the freshwater snail family Lymnaeidae (Pulmonata: Basommatophora) utilising mitochondrial ribosomal DNA sequences (1997) Journal of Molluscan Studies, 63, pp. 173-185
  • Ren, M.X., Zhang, Q.G., Zhang, D.Y., Random amplified polymorphic DNA markers reveal low genetic variation and a single dominant genotype in Eichhornia crassipes populations throughout China (2005) Weed Research, 45, pp. 236-244
  • Roman, J., Darling, J.A., Paradox lost: genetic diversity and the success of aquatic invasions (2007) Trends in Ecology and Evolution, 22, pp. 454-464
  • Rousset, F., Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance (1997) Genetics, 145, pp. 1219-1228
  • Schoen, D.J., Brown, A.H.D., Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants (1991) Proceedings of the National Academy of Sciences USA, 88, pp. 4494-4497
  • Simonová, J., Simon, O.P., Kapic, Š., Nehasil, L., Horsák, M., Medium-sized forest snails survive passage through birds’ digestive tract and adhere strongly to birds’ legs: more evidence for passive dispersal mechanisms (2016) Journal of Molluscan Studies, 82, pp. 422-426
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0 (2013) Molecular Biology and Evolution, 30, pp. 2725-2729
  • Van Leeuwen, C.H., Huig, N., Van Der Velde, G., How did this snail get here? Several dispersal vectors inferred for an aquatic invasive species (2013) Freshwater Biology, 58, pp. 88-99
  • Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M., Shipley, P., MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data (2004) Molecular Ecology Notes, 4, pp. 535-538
  • Van Oosterhout, C., Weetman, D., Hutchinson, W.F., Estimation and adjustment of microsatellite null alleles in nonequilibrium populations (2006) Molecular Ecology Notes, 6, pp. 255-256
  • Vázquez, A.A., Sánchez, J., Pointier, J.-P., Théron, A., Hurtrez-Boussès, S., Fasciola hepatica in Cuba: compatibility of different isolates with two intermediate snail hosts, Galba cubensis and Pseudosuccinea columella (2014) Journal of Helminthology, 88, pp. 434-440
  • Vázquez, A.A., Sánchez, J., Alba, A., Pointier, J.-P., Hurtrez-Boussès, S., Natural prevalence in Cuban populations of the lymnaeid snail Galba cubensis infected with the liver fluke Fasciola hepatica: small values do matter (2015) Parasitology Research, 114, pp. 4205-4210
  • Viard, F., Justy, F., Jarne, P., The influence of self-fertilization and population dynamics on the genetic structure of subdivided populations: a case study using microsatellite markers in the freshwater snail Bulinus truncatus (1997) Evolution, 51, pp. 1518-1528
  • Wares, J.P., Hughes, A.R., Grosberg, R.K., Mechanisms that drive evolutionary change: insights from species introductions and invasions (2005) Species Invasions: Insights into Ecology, Evolution, and Biogeography, pp. 229-257. , In, (eds, Sax DF, Stachowicz JJ, Gaines SD, Sinauer Associates, Massachusetts, Sunderland
  • Weir, B.S., Cockerham, C.C., Estimating F-statistics for the analysis of population structure (1984) Evolution, pp. 1358-1370
  • Zhang, Y.Y., Zhang, D.Y., Barrett, S.C.H., Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant (2010) Molecular Ecology, 19, pp. 1774-1786
  • Zhu, Y., Chen, H., Fan, J., Genetic diversity and disease control in rice (2000) Nature, 406, pp. 718-722
  • Zhu, B.-R., Barrett, S.C.H., Zhang, D.-Y., Liao, W.-J., Invasion genetics of Senecio vulgaris: loss of genetic diversity characterizes the invasion of a selfing annual, despite multiple introductions (2016) Biological Invasions, pp. 1-13


---------- APA ----------
Lounnas, M., Correa, A.C., Vázquez, A.A., Dia, A., Escobar, J.S., Nicot, A., Arenas, J.,..., Hurtrez-Boussès, S. (2017) . Self-fertilization, long-distance flash invasion and biogeography shape the population structure of Pseudosuccinea columella at the worldwide scale. Molecular Ecology, 26(3), 887-903.
---------- CHICAGO ----------
Lounnas, M., Correa, A.C., Vázquez, A.A., Dia, A., Escobar, J.S., Nicot, A., et al. "Self-fertilization, long-distance flash invasion and biogeography shape the population structure of Pseudosuccinea columella at the worldwide scale" . Molecular Ecology 26, no. 3 (2017) : 887-903.
---------- MLA ----------
Lounnas, M., Correa, A.C., Vázquez, A.A., Dia, A., Escobar, J.S., Nicot, A., et al. "Self-fertilization, long-distance flash invasion and biogeography shape the population structure of Pseudosuccinea columella at the worldwide scale" . Molecular Ecology, vol. 26, no. 3, 2017, pp. 887-903.
---------- VANCOUVER ----------
Lounnas, M., Correa, A.C., Vázquez, A.A., Dia, A., Escobar, J.S., Nicot, A., et al. Self-fertilization, long-distance flash invasion and biogeography shape the population structure of Pseudosuccinea columella at the worldwide scale. Mol. Ecol. 2017;26(3):887-903.