Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The thermotolerance effect of heat hardening (also called short-term acclimation), knockdown resistance to high temperature (KRHT) with and without heat hardening and chill-coma recovery (CCR) are important phenotypes of thermal adaptation in insects and other organisms. Drosophila melanogaster from Denmark and Australia were previously selected for low and high KRHT, respectively. These flies were crossed to construct recombinant inbred lines (RIL). KRHT was higher in heat-hardened than in nonhardened RIL. We quantify the heat-hardening effect (HHE) as the ratio in KRHT between heat-hardened and nonhardened RIL. Composite interval mapping revealed a more complex genetic architecture for KRHT without heat-hardening than for KRHT in heat-hardened insects. Five quantitative trait loci (QTL) were found for KRHT, but only two of them were significant after heat hardening. KRHT and CCR showed trade-off associations for QTL both in the middle of chromosome 2 and the right arm of chromosome 3, which should be the result of either pleiotropy or linkage. The major QTL on chromosome 2 explained 18% and 27-33% of the phenotypic variance in CCR and KRHT in nonhardened flies, respectively, but its KRHT effects decreased by heat hardening. We discuss candidate loci for each QTL. One HHE-QTL was found in the region of small heat-shock protein genes. However, HHE-QTL explained only a small fraction of the phenotypic variance. Most heat-resistance QTL did not colocalize with CCR-QTL. Large-effect QTL for CCR and KRHT without hardening (basal thermotolerance) were consistent across continents, with apparent transgressive segregation for CCR. HHE (inducible thermotolerance) was not regulated by large-effect QTL. © 2008 The Authors.

Registro:

Documento: Artículo
Título:QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster
Autor:Norry, F.M.; Scannapieco, A.C.; Sambucetti, P.; Bertoli, C.I.; Loeschcke, V.
Filiación:Departamento de Ecología, Genética Y Evolución, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, (C-1428EHA) Buenos Aires, Argentina
Department of Biological Sciences, Ecology and Genetics, University of Aarhus, Bldg. 1540, Ny Munkegade, DK-8000 Aarhus C, Denmark
Palabras clave:Cold stress; Heat acclimation; Inducible thermotolerance; Thermal adaptation; Trade-off; Transgressive segregation; microsatellite DNA; adaptation; animal; article; chromosome map; cold; cross breeding; Drosophila melanogaster; female; gene; gene silencing; genetic marker; genetics; genotype; heat; heat shock response; male; phenotype; physiology; quantitative trait; quantitative trait locus; statistical model; Adaptation, Physiological; Animals; Chromosome Mapping; Cold Temperature; Crosses, Genetic; Drosophila melanogaster; Female; Gene Knockdown Techniques; Genes, Insect; Genetic Markers; Genotype; Heat-Shock Response; Hot Temperature; Likelihood Functions; Male; Microsatellite Repeats; Phenotype; Quantitative Trait Loci; Quantitative Trait, Heritable; Drosophila melanogaster; Hexapoda
Año:2008
Volumen:17
Número:20
Página de inicio:4570
Página de fin:4581
DOI: http://dx.doi.org/10.1111/j.1365-294X.2008.03945.x
Título revista:Molecular Ecology
Título revista abreviado:Mol. Ecol.
ISSN:09621083
CODEN:MOECE
CAS:Genetic Markers
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09621083_v17_n20_p4570_Norry

Referencias:

  • Anderson, A.R., Collinge, J.E., Hoffmann, A.A., Kellett, M., McKechnie, S.W., Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omega gene in Drosophila melanogaster. (2003) Heredity, 90, pp. 195-201
  • Anderson, A.R., Hoffmann, A.A., McKechnie, S.W., Umina, P.A., Weeks, A.R., The latitudinal cline in the In(3R)Payne inversion polymorphism has shifted in the last 20 years in Australian Drosophila melanogaster populations (2005) Molecular Ecology, 14, pp. 851-858
  • Atchley, W.R., Gaskins, C.T., Anderson, D., Statistical properties of ratios. I. Empirical results (1976) Systematic Zoology, 25, pp. 137-148
  • Basten, C.J., Weir, B.S., Zeng, Z.-B., (1999) QTL Cartographer, Version 1.13: A Reference Manual and Tutorial for QTL Mapping., , Department of Statistics, North Carolina State University, Raleigh, North Carolina
  • Bettencourt, B.R., Kim, I., Hoffmann, A.A., Al, E., Response to natural and laboratory selection at the Drosophila hsp70 genes (2002) Evolution, 56, pp. 1796-1801
  • Bubli, O., Imasheva, A.G., Loeschcke, V., Selection for knockdown resistance to heat in Drosophila melanogaster at high and low larval densities (1998) Evolution, 52, pp. 619-625
  • Colson, I., MacDonald, S.J., Goldstein, D.B., Microsatellite markers for interspecific mapping of Drosophila simulans and D. sechellia. (1999) Molecular Ecology, 8, pp. 1951-1955
  • David, J.R., Gibert, P., Moreteau, B., Gilchrist, G.W., Huey, R.B., The fly that came in from the cold: Geographic variation of recovery time from low-temperature exposure in Drosophila subobscura (2003) Functional Ecology, 17, pp. 425-430
  • Feder, M.E., Hofmann, G.E., Heat-shock proteins, molecular chaperones, and the stress response (1999) Annual Review of Physiology, 61, pp. 243-282
  • Feder, M.E., Cartano, N.V., Milos, L., Krebs, R.A., Lindquist, S.L., Effect of engineering hsp70 copy number on Hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster (1997) Journal of Experimental Biology, 199, pp. 1837-1844
  • Feder, M.E., Roberts, S.P., Bordelon, A.C., Molecular thermal telemetry of free-ranging adult Drosophila melanogaster (2000) Oecologia, 123, pp. 460-465
  • Frydenberg, J., Hoffmann, A.A., Loeschcke, V., DNA sequence variation and latitudinal associations in hsp23, hsp26 and hsp27 from natural populations of Drosophila melanogaster (2003) Molecular Ecology, 12, pp. 2025-2032
  • Gibert, P., Moreteau, B., Pévati, G., Karan, D., David, J.R., Chill-coma tolerance, a major climatic adaptation among Drosophila species (2001) Evolution, 55, pp. 1063-1068
  • Gilchrist, G.W., Huey, R.B., The direct response of Drosophila melanogaster to selection on knockdown temperature (1999) Heredity, 83, pp. 15-29
  • Gockel, J., Kennington, W.J., Hoffmann, A.A., Goldstein, D.B., Partridge, L., Non-clinality of molecular variation implicates selection in maintaining a morphological cline of Drosophila melanogaster (2001) Genetics, 158, pp. 319-323
  • Gockel, J., Robinson, S.J.W., Kennington, W.J., Goldstein, D.B., Partridge, L., Quantitative genetic analysis of natural variation in body size in Drosophila melanogaster (2002) Heredity, 89, pp. 145-153
  • Harr, B., Zangeri, B., Brem, G., Schlötterer, C., Conservation of locus specific microsatellite variability across species: A comparison of two Drosophila sibling species D. melanogaster and D. simulans (1998) Molecular Biology and Evolution, 15, pp. 176-184
  • Hoffmann, A.A., Daborn, P.J., Towards genetic markers in animal populations as biomonitors for human-induced environmental change (2007) Ecology Letters, 10, pp. 63-76
  • Hoffmann, A.A., Parsons, A., (1991) Evolutionary Genetics and Environmental Stress., , Oxford University Press, Oxford, UK
  • Hoffmann, A.A., Willi, Y., Detecting genetic responses to environmental change (2008) Nature Reviews Genetics, 9, pp. 421-431
  • Hoffmann, A.A., Anderson, A., Hallas, R., Opposing clines for high and low temperature resistance in Drosophila melanogaster (2002) Ecology Letters, 5, pp. 614-618
  • Hoffmann, A.A., Sørensen, J.G., Loeschcke, V., Adaptation of Drosophila to temperature extremes: Bringing together quantitative and molecular approaches (2003) Journal of Thermal Biology, 28, pp. 175-216
  • Huey, R.B., Crill, W.D., Kingsolver, J.G., Weber, K.E., A method for rapid measurement of heat or cold resistance of small insects (1992) Functional Ecology, 6, pp. 489-494
  • Kauer, M., Dieringer, D., Schlötterer, C., Nonneutral admixture of immigrant genotypes in African Drosophila melanogaster populations from zimbabwe (2003) Molecular Biology and Evolution, 20, pp. 1329-1337
  • Kauer, M., Zangerl, B., Dieringer, D., Schlötterer, C., Chromosomal patterns of microsatellite variability contrast sharply in African and non-african populations of Drosophila melanogaster. (2002) Genetics, 160, pp. 247-256
  • Kauer, M.O., Schlötterer, C., An analysis of genetic differentiation among assortatively mating Drosophila melanogaster in Zimbabwe (2004) Journal of Evolutionary Biology, 17, pp. 493-500
  • Leemans, R., Egger, B., Loop, T., Al, E., Quantitative transcript imaging in normal and heat-shocked Drosophila embryos by using high-density oligonucleotide arrays (2000) Proceedings of the National Academy of Sciences, USA, 97, pp. 12138-12143
  • Loeschcke, V., Hoffmann, A.A., Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature (2007) The American Naturalist, 169, pp. 175-183
  • Lynch, M., Walsh, B., (1998) Genetics and Analysis of Quantitative Traits., , Sinauer Associates, Inc., Sunderland, Massachusetts
  • MacKay, T.F.C., Quantitative trait loci in Drosophila (2001) Nature Review Genetics, 2, pp. 11-20
  • McColl, G., Hoffmann, A.A., McKechnie, S.W., Response of two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster (1996) Genetics, 143, pp. 1615-1627
  • Mettler, L.E., Voelker, R.A., Mukai, T., Inversion clines in populations of Drosophila melanogaster (1977) Genetics, 87, pp. 169-176
  • Morgan, T.J., MacKay, T.F.C., Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster (2006) Heredity, 96, pp. 232-242
  • Nielsen, M.M., Sørensen, J.G., Kruhøffer, M., Justesen, J., Loeschcke, V., Phototransduction genes are up-regulated in a global gene expression study of Drosophila melanogaster selected for heat resistance (2006) Cell Stress and Chaperones, 11, pp. 325-333
  • Norry, F.M., Loeschcke, V., Heat-induced expression of a molecular chaperone decreases by selecting for long-lived individuals (2003) Experimental Gerontology, 38, pp. 673-681
  • Norry, F.M., Dahlgaard, J., Loeschcke, V., Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster (2004) Molecular Ecology, 13, pp. 3585-3594
  • Norry, F.M., Gomez, F.H., Loeschcke, V., Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a central region of chromosome 2 in Drosophila melanogaster. (2007) Molecular Ecology, 16, pp. 3274-3284
  • Norry, F.M., Sambucetti, P., Scannapieco, A.C., Gomez, F.H., Loeschcke, V., X-linked QTL for knockdown resistance to high temperature in Drosophila melanogaster. (2007) Insect Molecular Biology, 16, pp. 509-513
  • Nuzhdin, S.V., Pasyukova, E.G., Dilda, C.A., Zeng, Z.B., MacKay, T.F.C., Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster (1997) Proceedings of the National Academy of Sciences, USA, 97, pp. 9734-9739
  • Qin, W., Neal, S.J., Robertson, R.M., Westwood, J.T., Walker, V.K., Cold hardening and transcriptional change in Drosophila melanogaster (2005) Insect Molecular Biology, 14, pp. 607-613
  • Rako, L., Hoffmann, A.A., Complexity of acclimation response in Drosophila melanogaster (2006) Journal of Insect Physiology, 52, pp. 94-104
  • Rako, L., Blacket, M.J., McKechnie, S.W., Hoffmann, A.A., Candidate genes and thermal phenotypes: Identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline (2007) Molecular Ecology, 16, pp. 2948-2957
  • Reusch, T.B.H., Wood, T.E., Molecular ecology of global change (2007) Molecular Ecology, 16, pp. 3973-3992
  • Rieseberg, L.H., Widmer, A., Arntz, A.M., Burke, J.M., The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations (2003) Philosophical Transactions of the Royal Society B: Biological Sciences, 358, pp. 1141-1147
  • Schlötterer, C., Vogl, C., Tautz, D., Polymorphism and locus-specific effects on polymorphism at microsatellite loci in natural Drosophila melanogaster populations (1997) Genetics, 146, pp. 309-329
  • Schug, M.D., Wetterstrand, K.A., Gaudette, M.S., Lim, R.H., Hutter, C.M., Aquadro, C.F., The distribution of microsatellite loci in Drosophila melanogaster (1998) Molecular Ecology, 7, pp. 57-70
  • Silver, J., Confidence limits for estimates of gene linkage based on analysis of recombinant inbred strains (1985) Heredity, 76, pp. 436-440
  • Sinclair, B.J., Gibbs, A.G., Roberts, S.P., Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. (2007) Insect Molecular Biology, 16, pp. 435-443
  • Sørensen, J.G., Loeschcke, V., Natural variation o environmental stress via physiological clock-regulation of stress resistance in Drosophila (2002) Ecology Letters, 5, pp. 16-19
  • Sørensen, J.G., Norry, F.M., Scannapieco, A.C., Loeschcke, V., Altitudinal variation for stress resistance traits and thermal adaptation in adult Drosophila buzzatii from the New World (2005) Journal of Evolutionary Biology, 18, pp. 829-837
  • Sørensen, J.G., Nielsen, M.M., Kruhøffer, M., Justesen, J., Loeschcke, V., Full genome gene expression analysis of the heat stress response in Drosophila melanogaster (2005) Cell Stress and Chaperones, 10, pp. 312-328
  • Sørensen, J.G., Nielsen, M.M., Loeschcke, V., Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors (2007) Journal of Evolutionary Biology, 20, pp. 1624-1636
  • Umina, P.A., Weeks, A.R., Kearney, M.R., McKechnie, S.W., Hoffmann, A.A., A rapid shift in a classic clinal pattern in Drosophila reflecting climate change (2005) Science, 308, pp. 691-693
  • Walser, J.C., Chen, B., Feder, M.E., Heat-shock promoters: Targets for evolution by P transposable elements in Drosophila (2006) Public Library of Science, Biology, 2, pp. 1541-1555
  • Wesley, C.S., Eanes, W.F., Isolation and analysis of the breakpoint sequences of chromosome inversion In(3L)Payne in Drosophila melanogaster (1994) Proceedings of the National Academy of Sciences, USA, 91, pp. 3132-3136
  • Zeng, Z.-B., Precision mapping of quantitative trait loci (1994) Genetics, 136, pp. 1457-1468. , F.M.N. is a member of the National Council of Scientific Research (CONICET) of Argentina. He is an evolutionary biologist primarily interested in evolution of stress resistance and senescence, as topics of his new laboratory at Buenos Aires University. A.C.S., P.S. and CIB are PhD-fellows of either CONICET (ACS, PS) or ANPCyT (CIB) in Argentina, all of them interested in sress-resistance evolution. V.L. is professor in evolutionary genetics and head of the Aarhus Centre for Environmental Stress research, aiming at relating variation on the DNA level to variation in function and phenotype of stress resistance and related life-history traits

Citas:

---------- APA ----------
Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I. & Loeschcke, V. (2008) . QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster. Molecular Ecology, 17(20), 4570-4581.
http://dx.doi.org/10.1111/j.1365-294X.2008.03945.x
---------- CHICAGO ----------
Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I., Loeschcke, V. "QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster" . Molecular Ecology 17, no. 20 (2008) : 4570-4581.
http://dx.doi.org/10.1111/j.1365-294X.2008.03945.x
---------- MLA ----------
Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I., Loeschcke, V. "QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster" . Molecular Ecology, vol. 17, no. 20, 2008, pp. 4570-4581.
http://dx.doi.org/10.1111/j.1365-294X.2008.03945.x
---------- VANCOUVER ----------
Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I., Loeschcke, V. QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster. Mol. Ecol. 2008;17(20):4570-4581.
http://dx.doi.org/10.1111/j.1365-294X.2008.03945.x