Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In insects, two ecologically relevant traits of thermal adaptation are knockdown resistance to high temperature (KRHT) and chill-coma recovery (CCR). Chromosome 2 of Drosophila melanogaster was tested for quantitative trait loci (QTL) affecting both CCR and KRHT in backcrosses between homosequential lines that are fixed for the standard (noninverted) sequence of this autosome. These lines were obtained by artificial selection on KRHT and subsequent inbreeding from a stock that was derived from a single wild population. Heat-induced expression of the 70KD heat-shock protein (Hsp70) was also examined for variation between the lines. Composite interval mapping was performed for each trait on each reciprocal backcross, identifying one QTL region in the middle of chromosome 2 for both KRHT and CCR. The largest estimates of additive effects were found in pericentromeric regions of chromosome 2, accounting for 10-14% (CCR) and 10-17% (KRHT) of the phenotypic variance in BC populations. No QTL was found in the region of the heat-shock factor (hsf) gene. However, the two parental lines have diverged in the heat-induced Hsp70 expression. Distribution of KRHT QTL on chromosome 2 was similar between this study based on crosses between lines selected from a single wild population and previous work based on crosses between selection lines from different continents. Colocalized QTL showed a trade-off association between CCR and KRHT, which should be the result of either multiple, tightly linked trait-specific genes or a single gene with pleiotropic effects on the traits. We discuss candidate loci contained within the QTL regions. © 2007 The Authors.

Registro:

Documento: Artículo
Título:Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a quantitative trait locus region of chromosome 2 in Drosophila melanogaster
Autor:Norry, F.M.; Gomez, F.H.; Loeschcke, V.
Filiación:Departamento de Ecología, Genética Y Evolución, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, C-1428-EHA, Buenos Aires, Argentina
Department of Ecology and Genetics, University of Aarhus, Bldg. 1540, Ny Munkegade, DK-8000 Aarhus C, Denmark
Palabras clave:Cold-stress resistance; Drosophila; Heat-stress resistance; Hsp70 expression; QTL; Thermal adaptation; Drosophila protein; heat shock protein 70; adaptation; animal; article; chromosome; chromosome map; cold; Drosophila melanogaster; genetics; heat; heat shock response; male; metabolism; phenotype; physiology; quantitative trait locus; Adaptation, Biological; Animals; Chromosome Mapping; Chromosomes; Cold; Drosophila melanogaster; Drosophila Proteins; Heat; Heat-Shock Response; HSP70 Heat-Shock Proteins; Male; Phenotype; Quantitative Trait Loci; Drosophila melanogaster; Hexapoda
Año:2007
Volumen:16
Número:15
Página de inicio:3274
Página de fin:3284
DOI: http://dx.doi.org/10.1111/j.1365-294X.2007.03335.x
Título revista:Molecular Ecology
Título revista abreviado:Mol. Ecol.
ISSN:09621083
CODEN:MOECE
CAS:Drosophila Proteins; HSP70 Heat-Shock Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09621083_v16_n15_p3274_Norry

Referencias:

  • Anderson, A.R., Collinge, J.E., Hoffmann, A.A., Kellett, M., McKechnie, S.W., Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omegagene in Drosophila melanogaster. (2003) Heredity, 90, pp. 195-201
  • Anderson, A.R., Hoffmann, A.A., McKechnie, S.W., Umina, P.A., Weeks, A.R., The latitudinal cline in the in (3R) Payne inversion polymorphism has shifted in the last 20 years in Australian Drosophila melanogasterpopulations (2005) Molecular Ecology, 14, pp. 851-858
  • Barton, N.H., Keightley, P.D., Understanding quantitative genetic variation (2002) Nature Reviews Genetic, 3, pp. 11-21
  • Basten, C.J., Weir, B.S., Zeng, Z.-B., (1999) QTL Cartographer, Version 1.13: A Reference Manual and Tutorial for QTL Mapping., , Department of Statistics, North Carolina State University, Raleigh, North Carolina
  • Bettencourt, B.R., Feder, F.E., Cavicchi, S., Experimental evolution of Hsp70 expression and thermotolerance in Drosophila melanogaster (1999) Evolution, 53, pp. 484-492
  • Bettencourt, B.R., Kim, I.Y., Hoffmann, A.A., Feder, M.E., Response to natural and laboratory selection at the Drosophila hsp70genes (2002) Evolution, 56, pp. 484-492
  • Bubli, O.A., Imasheva, A.G., Loeschcke, V., Selection for knockdown resistance to heat in Drosophila melanogasterat high and low larval densities (1998) Evolution, 52, pp. 619-625
  • Bubliy, O.A., Loeschcke, V., Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster (2005) Journal of Evolutionary Biology, 18, pp. 789-803
  • Colson, I., MacDonald, S.J., Goldstein, D.B., Microsatellite markers for interspecific mapping of Drosophila simulansand D. sechellia. (1999) Molecular Ecology, 8, pp. 1951-1955
  • Dahlgaard, J., Loeschcke, V., Michalak, P., Justesen, J., Induced thermotolerance, and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster (1998) Functional Ecology, 12, pp. 786-793
  • Daibo, S., Kimura, M.T., Goto, S.G., Upregulation of genes belonging to the drosomycin family in diapausing adults of Drosophila triauraria. (2001) Gene, 278, pp. 177-184
  • David, J.R., Gilbert, P., Pla, E., Petavy, G., Karan, D., Moreteau, B., Cold stress tolerance in Drosophila: Analysis of chill coma recovery in D. melanogaster (1998) Journal of Thermal Biology, 23, pp. 291-299
  • David, J.R., Gilbert, P., Moreteau, B., Gilchrist, G.W., Huey, R.B., The fly that came in from the cold: Geographical variation of recovery time from low-temperature exposure in Drosophila subobscura (2003) Functional Ecology, 17, pp. 425-430
  • Erickson, D.L., Fenster, C.B., Stenøien, H.K., Price, D., Quantitative trait locus analyses and the study of evolutionary process (2004) Molecular Ecology, 13, pp. 2505-2522
  • Falconer, D.S., MacKay, T.F.C., (1996) Introduction to Quantitative Genetics, , 4th edn. Addison-Wesley Longman, Harlow
  • Feder, M.E., Hofmann, G.E., Heat-shock proteins, molecular chaperones, and the stress response (1999) Annual Review of Physiology, 61, pp. 243-282
  • Feder, M.E., Cartano, N.V., Milos, L., Krebs, R.A., Lindquist, S.L., Effect of engineering hsp70copy number on Hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster (1997) Journal of Experimental Biology, 199, pp. 1837-1844
  • The FlyBase database of the Drosophila genome projects and community literature (2003) Nuclei Acids Research, 31, pp. 172-175. , http://FlyBase.org, FlyBase Consortium (
  • Frydenberg, J., Hoffmann, A.A., Loeschcke, V., DNA sequence variation and latitudinal associations in hsp23, hsp26and hsp 27from natural populations of Drosophila melanogaster (2003) Molecular Ecology, 12, pp. 2025-2032
  • Gilchrist, G.W., Huey, R.B., The direct response of Drosophila melanogasterto selection on knockdown temperature (1999) Heredity, 83, pp. 15-29
  • Gockel, J., Kennington, W.J., Hoffmann, A., Goldstein, B.D., Partridge, L., Nonclinality of molecular variation implicates selection in maintaining a morphological cline of Drosophila melanogaster (2001) Genetics, 158, pp. 319-323
  • Gockel, J., Robinson, S.J.W., Kennington, W.J., Goldstein, D.B., Partridge, L., Quantitative genetic analysis of natural variation in body size in Drosophila melanogaster (2002) Heredity, 89, pp. 145-153
  • Goto, S.G., Expression of a Drosophila homologue of senescence marker protein-30 during cold acclimation (2000) Journal of Insect Physiology, 46, pp. 1111-1120
  • Goto, S.G., A novel gene that is up-regulated during recovery from cold shock in Drosophila melanogaster. (2001) Gene, 270, pp. 259-264
  • Greenberg, A.J., Moran, J.R., Coyne, J.A., Wu, C.I., Ecological adaption during incipient speciation revealed by precise gene replacement (2003) Science, 302, pp. 1754-1757
  • Hoffmann, A.A., Daborn, P.J., Towards genetic markers in animal populations as biomonitors for human-induced environmental change (2007) Ecology Letters, 10, pp. 63-76
  • Hoffmann, A.A., Weeks, A.R., Climatic selection on genes and traits after a 100 year-old invasion: A critical look at the temperature-tropical clines in Drosophila melanogasterfrom eastern Australia (2007) Genetica, 129, pp. 133-147
  • Hoffmann, A.A., Anderson, A., Hallas, R., Opposing clines for high and low temperature resistance in Drosophila melanogaster (2002) Ecology Letters, 5, pp. 614-618
  • Hoffmann, A.A., Sørensen, J.G., Loeschcke, V., Adaptation of Drosophilato temperature extremes: Bringing together quantitative and molecular approaches (2003) Journal of Thermal Biology, 28, pp. 175-216
  • Huey, R.B., Crill, W.D., Kingsolver, J.G., Weber, K.E., A method for rapid measurement of heat or cold resistance of small insects (1992) Functional Ecology, 6, pp. 489-494
  • Jiang, C., Zeng, Z.-B., Multiple trait analysis of genetic mapping for quantitative trait loci (1995) Genetics, 140, pp. 1111-1127
  • Kelty, J.D., Lee, R.E., Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles (2001) Journal of Experimental Biology, 204, pp. 1659-1666
  • Kosambi, D.D., The estimation of map distances from recombination values (1944) Annual Eugenetics, 12, pp. 172-175
  • Krebs, R.A., Loeschcke, V., Costs and benefits of activation of the heat shock response in Drosophila melanogaster (1994) Functional. Ecology, 8, pp. 730-737
  • Krebs, R.A., Loeschcke, V., Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster (1994) Journal of Evolutionary Biology, 7, pp. 39-49
  • Leemans, R., Egger, B., Loop, T., Al, E., Quantitative transcript imaging in normal and heat-shocked Drosophilaembryos by using high-density oligonucleotide arrays (2000) Proceedings of the National Academy of Science, USA, 97, pp. 12138-12143
  • Lerman, D.N., Feder, M.E., Naturally occurring transposable elements disrupt hsp79 promoter function in Drosophila melanogaster (2005) Molecular Biology and Evolution, 22, pp. 776-783
  • Lerman, D.N., Michalak, P., Helin, A.B., Bettencourt, B.R., Feder, M.E., Modification of heat-shock gene expression in Drosophila melanogasterpopulations via transposable elements (2003) Molecular Biology and Evolution, 20, pp. 135-144
  • Liu, J., Mercer, J.M., Stam, L.F., Gibson, G.G., Zeng, Z.-B., Laurie, C.C., Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulansand D. mauritiana (1996) Genetics, 142, pp. 1129-1145
  • Lynch, M., Walsh, B., (1998) Genetics and Analysis of Quantitative Traits., , Sinauer Associates, Inc., Massachusetts
  • MacKay, T.F.C., Quantitative trait loci in Drosophila (2001) Nature Reviews Genetics, 2, pp. 11-20
  • MacKay, T.F.C., The genetic architecture of quantitative traits: Lessons from Drosophila (2004) Current Opinion in Genetics and Development, 14, pp. 253-257
  • McColl, G., Hoffmann, A.A., McKechnie, S.W., Response of two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster (1996) Genetics, 143, pp. 1615-1627
  • Morgan, T.J., MacKay, T.F.C., Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster (2006) Heredity, 96, pp. 232-242
  • Noor, M.A.F., Aimee, A.M., Larkin, J.C., Consequences of recombination rate variation on quantitative trait locus mapping studies: Simulations based on the Drosophila melanogastergenome (2001) Genetics, 159, pp. 581-588
  • Norry, F.M., Loeschcke, V., Heat-induced expression of a molecular chaperone decreases by selecting for long-lived individuals (2003) Experimental Gerontology, 38, pp. 673-681
  • Norry, F.M., Dahlgaard, J., Loeschcke, V., Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster (2004) Molecular Ecology, 13, pp. 3585-3594
  • Qin, W., Neal, S.J., Robertson, R.M., Westwood, J.T., Walker, V.K., Cold hardening and transcriptional change in Drosophila melanogaster (2005) Insect Molecular Biology, 14, pp. 607-613
  • Scannapieco, A.C., Sørensen, J.C., Loeschcke, V., Norry, F.M., Heat-induced hormesis in longevity of two sibling Drosophilaspecies (2007) Biogerontology, , in press
  • Schlötterer, C., Vogl, C., Tautz, D., Polymorphism and locus-specific effects on polymorphism at microsatellite loci in natural Drosophila melanogasterpopulations (1997) Genetics, 146, pp. 309-329
  • Schug, M.D., Wetterstrand, K.A., Gaudette, M.S., Lim, R.H., Hutter, C.M., Aquadro, C.F., The distribution of microsatellite loci in Drosophila melanogaster (1998) Molecular Ecology, 7, pp. 57-70
  • Silbermann, R., Tatar, M., Reproductive costs of heat shock proteins in transgenic Drosophila melanogaster (2000) Evolution, 54, pp. 2038-2045
  • Slate, J., Quantitative trait locus mapping in natural populations: Progress, caveats and future directions (2005) Molecular Ecology, 14, pp. 363-379
  • Sørensen, J.G., Norry, F.M., Scannapieco, A.C., Loeschcke, V., Altitudinal variation for stress resistance traits and thermal adaptation in adult Drosophila buzzatiifrom the New World (2005) Journal of Evolutionary Biology, 18, pp. 829-837
  • Sørensen, J.G., Nielsen, M.M., Kruhøffer, M., Justesen, J., Loeschcke, V., Full genome gene expression analysis of the heat stress response in Drosophila melanogaster (2005) Cell Stress and Chaperones, 10, pp. 312-328
  • Sørensen, J.G., Nielsen, M.M., Loeschcke, V., (2007) Gene Expression Profile Analysis of Drosophila Melanogasterselected for Resistance to Environmental Stressors, , Journal of Evolutionary Biology, in press
  • Heat shock factor and the heat shock response (1991) Cell, 65, pp. 363-366. , Sorger (
  • Velazquez, J.M., Didomenico, B.J., Linquist, S., Intracellular localization of heat-shock proteins in Drosophila (1980) Cell, 20, pp. 679-690
  • Velazquez, J.M., Sonoda, S., Bugaisky, G., Lindquist, S., Is the major Drosophilaheat-shock protein present in cells that have not been heat shocked? (1983) Journal of Cell Biology, 96, pp. 286-290
  • Walser, J.C., Chen, B., Feder, M.E., Heat-shock promoters: Targets for evolution by P transposable elements in Drosophila (2006) Plos Biology, 2, pp. 1541-1555
  • Weeks, A.R., McKechnie, S.W., Hoffmann, A.A., Dissecting adaptive clinal variation: Markers, inversions and size/stress associations in Drosophila melanogasterfrom a central field population (2002) Ecology Letters, 5, pp. 756-763
  • Yoon, J.S., Richardson, R.H., Wheeler, M.R., A technique for improving salivery chromosome preparations (1973) Experientia, 29, pp. 639-641
  • Zeng, Z.-B., Precision mapping of quantitative trait loci (1994) Genetics, 136, pp. 1457-1468

Citas:

---------- APA ----------
Norry, F.M., Gomez, F.H. & Loeschcke, V. (2007) . Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a quantitative trait locus region of chromosome 2 in Drosophila melanogaster. Molecular Ecology, 16(15), 3274-3284.
http://dx.doi.org/10.1111/j.1365-294X.2007.03335.x
---------- CHICAGO ----------
Norry, F.M., Gomez, F.H., Loeschcke, V. "Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a quantitative trait locus region of chromosome 2 in Drosophila melanogaster" . Molecular Ecology 16, no. 15 (2007) : 3274-3284.
http://dx.doi.org/10.1111/j.1365-294X.2007.03335.x
---------- MLA ----------
Norry, F.M., Gomez, F.H., Loeschcke, V. "Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a quantitative trait locus region of chromosome 2 in Drosophila melanogaster" . Molecular Ecology, vol. 16, no. 15, 2007, pp. 3274-3284.
http://dx.doi.org/10.1111/j.1365-294X.2007.03335.x
---------- VANCOUVER ----------
Norry, F.M., Gomez, F.H., Loeschcke, V. Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a quantitative trait locus region of chromosome 2 in Drosophila melanogaster. Mol. Ecol. 2007;16(15):3274-3284.
http://dx.doi.org/10.1111/j.1365-294X.2007.03335.x