Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Knockdown resistance to high temperature is an ecologically important trait in small insects. A composite interval mapping was performed on the two major autosomes of Drosophila melanogaster to search for quantitative trait loci (QTL) affecting knockdown resistance to high temperature (KRHT). Two dramatically divergent lines from geographically different thermal environments were artificially selected on KRHT. These lines were crossed to produce two backcross (BC) populations. Each BC was analysed for 200 males with 18 marker loci on chromosomes 2 and 3. Three X-linked markers were used to test for X-linked QTL in an exploratory way. The largest estimate of autosome additive effects was found in the pericentromeric region of chromosome 2, accounting for 19.26% (BC to the low line) and 29.15% (BC to the high line) of the phenotypic variance in BC populations, but it could represent multiple closely linked QTL. Complete dominance was apparent for three QTL on chromosome 3, where heat-shock genes are concentrated. Exploratory analysis of chromosome X indicated a substantial contribution of this chromosome to KRHT. The results show that a large-effect QTL with dominant gene action maps on the right arm of chromosome 3. Further, the results confirm that QTL for heat resistance are not limited to chromosome 3.

Registro:

Documento: Artículo
Título:Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster
Autor:Norry, F.M.; Dahlgaard, J.; Loeschcke, V.
Filiación:Department of Ecology and Genetics, University of Aarhus, Bldg. 540, Ny Munkegade, DK-8000 Aarhus C, Denmark
Depto. de Ecologia, Genet. Y Evol., Fac. de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina
Human Micro Array Centre, Dept. Clin. Biochem. Clin. Genet., Odense University Hospital, Sdr. Boulevard 29, 5100 Odense C, Denmark
Natl. Cncl. Sci. Res. of Argentina, Argentina
University of Buenos Aires, Argentina
University of Southern Denmark, Odense University Hospital, Denmark
Aarhus Ctr. for Environ. Stress Res., Denmark
Palabras clave:Dominance; Drosophila; Heat-knockdown resistance; Heat-shock proteins; Heat-stress resistance; QTL; Thermal adaptation; microsatellite DNA; animal; article; chromosome map; cross breeding; DNA sequence; Drosophila melanogaster; genetic linkage; genetic marker; genetics; heat; male; molecular genetics; physiology; quantitative trait; quantitative trait locus; X chromosome; Animals; Chromosome Mapping; Crosses, Genetic; Drosophila melanogaster; Genetic Markers; Heat; Lod Score; Male; Microsatellite Repeats; Molecular Sequence Data; Quantitative Trait Loci; Quantitative Trait, Heritable; Sequence Analysis, DNA; X Chromosome; Drosophila melanogaster; Hexapoda; Insecta; Melanogaster
Año:2004
Volumen:13
Número:11
Página de inicio:3585
Página de fin:3594
DOI: http://dx.doi.org/10.1111/j.1365-294X.2004.02323.x
Título revista:Molecular Ecology
Título revista abreviado:Mol. Ecol.
ISSN:09621083
CODEN:MOECE
CAS:Genetic Markers
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09621083_v13_n11_p3585_Norry

Referencias:

  • Adams, M.D., Celniker, S.E., Holt, R.A., The genome sequence of Drosophila melanogaster (2000) Science, 287, pp. 2185-2195
  • Anderson, A.R., Collinge, J.E., Hoffmann, A.A., Kellett, M., McKechnie, S.W., Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omega gene in Drosophila melanogaster (2003) Heredity, 90, pp. 195-201
  • Basten, C.J., Weir, B.S., Zeng, Z.-B., (1999) QTL CARTOGRAPHER, Version 1.13. A Reference Manual and Tutorial for QTL Mapping, , Department of Statistics, North Carolina State University, Raleigh, NC
  • Bendena, W.G., Clare, J.C., Traverse, K.L., Lakhotia, S.C., Pardue, M.L., Multiple inducers of the Drosophila heat shock locus 93D (hsrω): Inducer-specific patterns of the three transcripts (1989) Journal of Cell Biology, 108, pp. 2017-2028
  • Bettencourt, B.R., Feder, F.E., Cavicchi, S., Experimental evolution of Hsp70 expression and thermotolerance in Drosophila melanogaster (1999) Evolution, 53, pp. 484-492
  • Bettencourt, B.R., Kim, I.Y., Hoffmann, A.A., Feder, M.E., Response to natural and laboratory selection at the Drosophila hsp70 genes (2002) Evolution, 56, pp. 1796-1801
  • Bubli, O., Imasheva, A.G., Loeschcke, V., Selection for knockdown resistance to heat in Drosophila melanogaster at high and low larval densities (1998) Evolution, 52, pp. 619-625
  • Cavicchi, S., Guerra, D., La Torre, V., Huey, R.B., Chromosomal analysis of heat-shock tolerance in Drosophila melanogaster evolving at different temperatures in the laboratory (1995) Evolution, 49, pp. 676-684
  • Colson, I., Macdonald, S.J., Goldstein, D.B., Microsatellite markers for interspecific mapping of Drosophila simulans and D. sechellia (1999) Molecular Ecology, 8, pp. 1951-1955
  • Dahlgaard, J., Loeschcke, V., Michalak, P., Justesen, J., Acclimation, thermal resistance and associated expression of the heat-shock protein hsp70 in adult Drosophila melanogaster (1998) Functional Ecology, 12, pp. 786-793
  • Didomenico, B.J., Bugaisky, G.E., Lindquist, S., The heat shock response is self-regulated at both the transcriptional and post-transcriptional levels (1982) Cell, 31, pp. 593-603
  • Falconer, D.S., Mackay, T.F.C., (1996) Introduction to Quantitative Genetics, , Longman Group Limited, Essex, UK
  • Feder, M.E., Cartano, N.V., Milos, L., Krebs, R.A., Lindquist, S.L., Effect of engineering hsp70 copy number on Hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster (1996) Journal of Experimental Biology, 199, pp. 1837-1844
  • Feder, M.E., Hofmann, G.E., Heat-shock proteins, molecular chaperones, and the stress response (1999) Annual Review of Physiology, 61, pp. 243-282
  • Fini, N.E., Bandena, W.G., Pardue, M.L., Unusual behavior of the cytoplasmic transcript of hsrω: An abundant, stress inducible RNA that is translated but yields no detectable protein product (1989) Journal of Cell Biology, 108, pp. 2045-2057
  • Frydenberg, J., Hoffmann, A.A., Loeschcke, V., DNA sequence variation and latitudinal associations in hsp23, hsp26 and hsp 27 from natural populations of Drosophila melanogaster (2003) Molecular Ecology, 12, pp. 2025-2032
  • Frydenberg, J., Pierpaoli, M., Loeschcke, V., Drosophila melanogaster is polymorphic for a specific repeated (CATA) sequence in the regulatory region of hsp23 (1999) Gene, 236, pp. 243-250
  • Gilchrist, G.W., Huey, R.B., The direct response of Drosophila melanogaster to selection on knockdown temperature (1999) Heredity, 83, pp. 15-29
  • Gockel, J., Kennington, W.J., Hoffman, A., Goldstein, D.B., Partridge, L., Non-clinality of molecular variation implicates selection in maintaining a morphological cline of Drosophila melanogaster (2001) Genetics, 158, pp. 319-323
  • Gockel, J., Robinson, S.J.W., Kennington, W.J., Goldstein, D.B., Partridge, L., Quantitative genetic analysis of natural variation in body size in Drosophila melanogaster (2002) Heredity, 89, pp. 145-153
  • Guerra, D.A., Loeschcke, V., Cavicchi, S., Chromosomal and cytoplasmic analysis of heat shock resistance in natural populations of Drosophila melanogaster (2000) Hereditas, 132, pp. 143-149
  • Hoffmann, A.A., Anderson, A., Hallas, R., Opposing clines for high and low temperature resistance in Drosophila melanogaster (2002) Ecology Letters, 5, pp. 614-618
  • Hoffmann, A.A., Dagher, H., Hercus, M., Berrigan, D., Comparing different measures of heat resistance in selected lines of Drosophila melanogaster (1997) Journal of Insect Physiology, 43, pp. 393-405
  • Hoffmann, A.A., Parsons, A., (1991) Evolutionary Genetics and Environmental Stress, , Oxford University Press, Oxford
  • Hoffmann, A.A., Sørensen, J.G., Loeschcke, V., Adaptation of Drosophila to temperature extremes: Bringing together quantitative and molecular approaches (2003) Journal of Thermal Biology, 28, pp. 175-216
  • Huey, R.B., Crill, W.D., Kingsolver, J.G., Weber, K.E., A method for rapid measurement of heat or cold resistance of small insects (1992) Functional Ecology, 6, pp. 489-494
  • Jiang, C., Zeng, Z.-B., Multiple trait analysis of genetic mapping for quantitative trait loci (1995) Genetics, 140, pp. 1111-1127
  • Jones, C., The genetic basis of Drosophila sechellia's resistance to host plkast toxin (1998) Genetics, 149, pp. 1899-1908
  • Kosambi, D.D., The estimation of map distances from recombination values (1944) Annual Eugenetics, 12, pp. 172-175
  • Krebs, R.A., Feder, M.E., Natural variation in the expression of the heat-shock protein HSP70 in a population of Drosophila melanogaster and its correlation with tolerance of ecologically relevant thermal stress (1997) Evolution, 51, pp. 173-179
  • Krebs, R.A., Feder, M.E., Lee, J., Heritability of expression of the 70KD heat-shock protein in Drosophila melanogaster and its relevance to the evolution of thermotolerance (1998) Evolution, 52, pp. 841-847
  • Krebs, R.A., Loeschcke, V., Costs and benefits of activation of the heat shock response in Drosophila melanogaster (1994) Functional Ecology, 8, pp. 730-737
  • Krebs, R.A., Loeschcke, V., Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster (1994) Journal of Evolutionary Biology, 7, pp. 39-49
  • Krebs, R.A., Loeschcke, V., Acclimation and selection for increased resistance to thermal stress in Drosophila buzzatii (1996) Genetics, 142, pp. 471-479
  • Kristensen, T.N., Dahlgaard, J., Loeschcke, V., Inbreeding affects the Hsp70 expression level in two species of Drosophila even at benign temperatures (2002) Evolution and Ecology Research, 4, pp. 1209-1216
  • Leemans, R., Egger, B., Loop, T., Quantitative transcript imaging in normal and heat-shocked Drosophila embryos by using high-density oligonucleotide arrays (2000) Proceedings of the National Academy of Sciences USA, 97, pp. 12138-12143
  • Lerman, D.N., Feder, M.E., Laboratory selection at different temperatures modifies heat-shock transcription factor (HSF) activation in Drosophila melanogaster (2001) Journal of Experimental Biology, 204, pp. 315-323
  • Lerman, D.N., Michalak, P., Helin, A.B., Bettencourt, B.R., Feder, M.E., Modification of heat-shock gene expression in Drosophila melanogaster populations via transposable elements (2003) Molecular Biology and Evolution, 20, pp. 135-144
  • Lindquist, S., The heat-shock response (1986) Annual Review of Biochemistry, 55, pp. 1151-1191
  • Liu, J., Mercer, J.M., Stam, L.F., Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana (1996) Genetics, 142, pp. 1129-1145
  • Loeschcke, V., Krebs, R.A., Selection for heat-shock resistance in larval and in adult Drosophila buzzatii: Comparing direct and indirect responses (1996) Evolution, 50, pp. 2354-2359
  • Lynch, M., The rate of morphological evolution in mammals from the standpoint of the neutral expectation (1990) American Naturalist, 136, pp. 727-741
  • Lynch, M., Walsh, B., (1998) Genetics and Analysis of Quantitative Traits, , Sinauer Associates, Inc., MA
  • Mackay, T.F.C., Quantitative trait loci in Drosophila (1996) Nature Review, 2, pp. 11-20
  • McColl, G., Hoffmann, A.A., McKechnie, S.W., Response to two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster (1996) Genetics, 143, pp. 1615-1627
  • McKechnie, S.W., Halford, M.M., McColl, G., Hoffmann, A.A., Both allelic variation and expression of nuclear and cytoplasmic transcripts of Hsr-omega are closely associated with thermal phenotype of Drosophila (1998) Proceedings of the National Academy of Sciences USA, 95, pp. 2423-2428
  • Morimoto, R.L., Tissieres, A., Georgopoulos, C., (1994) The Biology of Heat-Shock Proteins and Molecular Chaperons, , Cold Spring Harbor Press, New York
  • Morrison, W.W., Milkman, R., Modification of heat resistance in Drosophila by selection (1978) Nature, 273, pp. 49-50
  • Noor, M.A.F., Aimee, A.M., Larkin, J.C., Consequences of recombination rate variation on quantitative trait locus mapping studies: Simulations based on the Drosophila melanogaster genome (2001) Genetics, 159, pp. 581-588
  • Norry, F.M., Loeschcke, V., Heat-induced expression of a molecular chaperone decreases by selecting for long-lived individuals (2003) Experimental Gerontology, 38, pp. 673-681
  • Pardue, M.L., Bendena, W.G., Fini, M.E., Hsr-omega, a novel gene encoded by Drosophila heat shock puff (1990) Biological Bulletin, 179, pp. 77-86
  • Parsell, D.A., Lindquist, S., The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins (1993) Annual Review of Genetics, 27, pp. 437-496
  • Quintana, A., Prevosti, A., Genetic and environmental factors in the resistance of Drosophila subobscura adults to high temperature shock (1990) Theoretical and Applied Genetics, 79, pp. 103-107
  • Rice, W.R., Analyzing tables of statistical tests (1989) Evolution, 43, pp. 223-225
  • Schlötterer, C., Vogl, C., Tautz, D., Polymorphism and locus-specific effects on polymorphism at microsatellite loci in natural Drosophila melanogaster populations (1997) Genetics, 146, pp. 309-329
  • Schug, M.D., Wetterstrand, K.A., Gaudette, M.S., The distribution of microsatellite loci in Drosophila melanogaster (1998) Molecular Ecology, 7, pp. 57-70
  • Sørensen, J.G., Dahlgaard, J., Loeschcke, V., Genetic variation in natural populations of Drosophila buzzatii: Down regulation of Hsp70 expression and variation in heat stress traits (2001) Functional Ecology, 15, pp. 289-296
  • Sørensen, J.G., Michalak, P., Justesen, J., Loeschcke, V., Expression of the heat shock protein HSP70 in Drosophila buzzatii lines selected for thermal resistance (1999) Hereditas, 131, pp. 155-164
  • Velazquez, J.M., Didomenico, B.J., Lindquist, S., Intracelular localization of heat shock proteins in Drosophilia (1980) Cell, 20, pp. 679-689
  • Velazquez, J.M., Sonoda, S., Bugaisky, G., Lindquist, S., Is the major Drosophilia heat shock protein present in cells that have not been shocked? (1983) Journal of Cell Biology, 96, pp. 286-290
  • Weeks, A.R., McKechnie, S.W., Hoffmann, A.A., Dissecting adaptive clinal variation: Markers, inversions and size/stress associations in Drosophila melanogaster from a central field population (2002) Ecology Letters, 5, pp. 756-763
  • Wheeler, J.C., Bieschke, E.T., Tower, J., Muscle-specific expression of Drosophila hsp70 in response to aging and oxidative stress (1995) Proceedings of the National Academy of Sciences USA, 92, pp. 10408-10412
  • Zeng, Z.-B., Precision mapping of quantitative trait loci (1994) Genetics, 136, pp. 1457-1468
  • Zimmerman, E., Palsson, A., Gibson, G., Quantitative trait loci affecting components of wing shape in Drosophila melanogaster (2000) Genetics, 155, pp. 671-683

Citas:

---------- APA ----------
Norry, F.M., Dahlgaard, J. & Loeschcke, V. (2004) . Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster. Molecular Ecology, 13(11), 3585-3594.
http://dx.doi.org/10.1111/j.1365-294X.2004.02323.x
---------- CHICAGO ----------
Norry, F.M., Dahlgaard, J., Loeschcke, V. "Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster" . Molecular Ecology 13, no. 11 (2004) : 3585-3594.
http://dx.doi.org/10.1111/j.1365-294X.2004.02323.x
---------- MLA ----------
Norry, F.M., Dahlgaard, J., Loeschcke, V. "Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster" . Molecular Ecology, vol. 13, no. 11, 2004, pp. 3585-3594.
http://dx.doi.org/10.1111/j.1365-294X.2004.02323.x
---------- VANCOUVER ----------
Norry, F.M., Dahlgaard, J., Loeschcke, V. Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster. Mol. Ecol. 2004;13(11):3585-3594.
http://dx.doi.org/10.1111/j.1365-294X.2004.02323.x