Artículo

Schor, I.E.; Bussotti, G.; Maleš, M.; Forneris, M.; Viales, R.R.; Enright, A.J.; Furlong, E.E.M. "Non-coding RNA Expression, Function, and Variation during Drosophila Embryogenesis" (2018) Current Biology. 28(22):3547-3561.e9
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Long non-coding RNAs (lncRNAs) can often function in the regulation of gene expression during development; however, their generality as essential regulators in developmental processes and organismal phenotypes remains unclear. Here, we performed a tailored investigation of lncRNA expression and function during Drosophila embryogenesis, interrogating multiple stages, tissue specificity, nuclear localization, and genetic backgrounds. Our results almost double the number of annotated lncRNAs expressed at these embryonic stages. lncRNA levels are generally positively correlated with those of their neighboring genes, with little evidence of transcriptional interference. Using fluorescent in situ hybridization, we report the spatiotemporal expression of 15 new lncRNAs, revealing very dynamic tissue-specific patterns. Despite this, deletion of selected lncRNA genes had no obvious developmental defects or effects on viability under standard and stressed conditions. However, two lncRNA deletions resulted in modest expression changes of a small number of genes, suggesting that they fine-tune expression of non-essential genes. Several lncRNAs have strain-specific expression, indicating that they are not fixed within the population. This intra-species variation across genetic backgrounds may thereby be a useful tool to distinguish rapidly evolving lncRNAs with as yet non-essential roles. Schor et al. identify hundreds of new lncRNAs expressed at specific embryonic stages and in mesoderm. Many have very specific spatiotemporal expression. Deletion of 3 lncRNAs are viable with no obvious phenotypes, even when stressed. Many lncRNAs have strain-specific expression, highlighting how sequence variation leads to intergenic transcription. © 2018 The Author(s)

Registro:

Documento: Artículo
Título:Non-coding RNA Expression, Function, and Variation during Drosophila Embryogenesis
Autor:Schor, I.E.; Bussotti, G.; Maleš, M.; Forneris, M.; Viales, R.R.; Enright, A.J.; Furlong, E.E.M.
Filiación:Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, CB10 1SD, United Kingdom
Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:bystander expression; embryonic development; genetic variation; lncRNA; non-coding RNA; non-essential genes; transcription
Año:2018
Volumen:28
Número:22
Página de inicio:3547
Página de fin:3561.e9
DOI: http://dx.doi.org/10.1016/j.cub.2018.09.026
Título revista:Current Biology
Título revista abreviado:Curr. Biol.
ISSN:09609822
CODEN:CUBLE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09609822_v28_n22_p3547_Schor

Referencias:

  • Dunham, I., Kundaje, A., Aldred, S.F., Collins, P.J., Davis, C.A., Doyle, F., Epstein, C.B., Kaul, R., An integrated encyclopedia of DNA elements in the human genome (2012) Nature, 489, pp. 57-74
  • Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Knowles, D.G., The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression (2012) Genome Res., 22, pp. 1775-1789
  • Quinn, J.J., Chang, H.Y., Unique features of long non-coding RNA biogenesis and function (2016) Nat. Rev. Genet., 17, pp. 47-62
  • Kutter, C., Watt, S., Stefflova, K., Wilson, M.D., Goncalves, A., Ponting, C.P., Odom, D.T., Marques, A.C., Rapid turnover of long noncoding RNAs and the evolution of gene expression (2012) PLoS Genet., 8, p. e1002841
  • Quinn, J.J., Zhang, Q.C., Georgiev, P., Ilik, I.A., Akhtar, A., Chang, H.Y., Rapid evolutionary turnover underlies conserved lncRNA-genome interactions (2016) Genes Dev., 30, pp. 191-207
  • Ulitsky, I., Bartel, D.P., lincRNAs: genomics, evolution, and mechanisms (2013) Cell, 154, pp. 26-46
  • Cabili, M.N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., Rinn, J.L., Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses (2011) Genes Dev., 25, pp. 1915-1927
  • Washietl, S., Kellis, M., Garber, M., Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals (2014) Genome Res., 24, pp. 616-628
  • Batista, P.J., Chang, H.Y., Long noncoding RNAs: cellular address codes in development and disease (2013) Cell, 152, pp. 1298-1307
  • Flynn, R.A., Chang, H.Y., Long noncoding RNAs in cell-fate programming and reprogramming (2014) Cell Stem Cell, 14, pp. 752-761
  • Ulitsky, I., Shkumatava, A., Jan, C.H., Sive, H., Bartel, D.P., Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution (2011) Cell, 147, pp. 1537-1550
  • Hon, C.C., Ramilowski, J.A., Harshbarger, J., Bertin, N., Rackham, O.J., Gough, J., Denisenko, E., Severin, J., An atlas of human long non-coding RNAs with accurate 5′ ends (2017) Nature, 543, pp. 199-204
  • Mikhaylichenko, O., Bondarenko, V., Harnett, D., Schor, I.E., Males, M., Viales, R.R., Furlong, E.E.M., The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription (2018) Genes Dev., 32, pp. 42-57
  • Guo, H., Ahmed, M., Zhang, F., Yao, C.Q., Li, S., Liang, Y., Hua, J., Langstein, J., Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer (2016) Nat. Genet., 48, pp. 1142-1150
  • Schlackow, M., Nojima, T., Gomes, T., Dhir, A., Carmo-Fonseca, M., Proudfoot, N.J., Distinctive patterns of transcription and RNA processing for human lincRNAs (2017) Mol. Cell, 65, pp. 25-38
  • Camblong, J., Iglesias, N., Fickentscher, C., Dieppois, G., Stutz, F., Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae (2007) Cell, 131, pp. 706-717
  • Hongay, C.F., Grisafi, P.L., Galitski, T., Fink, G.R., Antisense transcription controls cell fate in Saccharomyces cerevisiae (2006) Cell, 127, pp. 735-745
  • Ørom, U.A., Derrien, T., Beringer, M., Gumireddy, K., Gardini, A., Bussotti, G., Lai, F., Huang, Q., Long noncoding RNAs with enhancer-like function in human cells (2010) Cell, 143, pp. 46-58
  • Scruggs, B.S., Gilchrist, D.A., Nechaev, S., Muse, G.W., Burkholder, A., Fargo, D.C., Adelman, K., Bidirectional transcription arises from two distinct hubs of transcription factor binding and active chromatin (2015) Mol. Cell, 58, pp. 1101-1112
  • Latos, P.A., Pauler, F.M., Koerner, M.V., Şenergin, H.B., Hudson, Q.J., Stocsits, R.R., Allhoff, W., Warczok, K.E., Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing (2012) Science, 338, pp. 1469-1472
  • Fatica, A., Bozzoni, I., Long non-coding RNAs: new players in cell differentiation and development (2014) Nat. Rev. Genet., 15, pp. 7-21
  • Bergmann, J.H., Li, J., Eckersley-Maslin, M.A., Rigo, F., Freier, S.M., Spector, D.L., Regulation of the ESC transcriptome by nuclear long noncoding RNAs (2015) Genome Res., 25, pp. 1336-1346
  • Schmitt, A.M., Chang, H.Y., Long noncoding RNAs in cancer pathways (2016) Cancer Cell, 29, pp. 452-463
  • Schmitz, S.U., Grote, P., Herrmann, B.G., Mechanisms of long noncoding RNA function in development and disease (2016) Cell. Mol. Life Sci., 73, pp. 2491-2509
  • Ballabio, A., Willard, H.F., Mammalian X-chromosome inactivation and the XIST gene (1992) Curr. Opin. Genet. Dev., 2, pp. 439-447
  • Ilik, I., Akhtar, A., roX RNAs: non-coding regulators of the male X chromosome in flies (2009) RNA Biol., 6, pp. 113-121
  • Sauvageau, M., Goff, L.A., Lodato, S., Bonev, B., Groff, A.F., Gerhardinger, C., Sanchez-Gomez, D.B., Spence, M., Multiple knockout mouse models reveal lincRNAs are required for life and brain development (2013) eLife, 2, p. e01749
  • Bassett, A.R., Akhtar, A., Barlow, D.P., Bird, A.P., Brockdorff, N., Duboule, D., Ephrussi, A., Haerty, W., Considerations when investigating lncRNA function in vivo (2014) eLife, 3, p. e03058
  • Li, L., Liu, B., Wapinski, O.L., Tsai, M.C., Qu, K., Zhang, J., Carlson, J.C., Gupta, R.A., Targeted disruption of Hotair leads to homeotic transformation and gene derepression (2013) Cell Rep., 5, pp. 3-12
  • Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S.A., Goodnough, L.H., Chang, H.Y., Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs (2007) Cell, 129, pp. 1311-1323
  • Amândio, A.R., Necsulea, A., Joye, E., Mascrez, B., Duboule, D., Hotair is dispensible for mouse development (2016) PLoS Genet., 12, p. e1006232
  • Selleri, L., Bartolomei, M.S., Bickmore, W.A., He, L., Stubbs, L., Reik, W., Barsh, G.S., A Hox-embedded long noncoding RNA: is it all hot air? (2016) PLoS Genet., 12, p. e1006485
  • Mulvey, B.B., Olcese, U., Cabrera, J.R., Horabin, J.I., An interactive network of long non-coding RNAs facilitates the Drosophila sex determination decision (2014) Biochim. Biophys. Acta, 1839, pp. 773-784
  • Petruk, S., Sedkov, Y., Riley, K.M., Hodgson, J., Schweisguth, F., Hirose, S., Jaynes, J.B., Mazo, A., Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference (2006) Cell, 127, pp. 1209-1221
  • MNutt, M., Retraction (2014) Science, 344, p. 981
  • Wen, K., Yang, L., Xiong, T., Di, C., Ma, D., Wu, M., Xue, Z., Zhang, W., Critical roles of long noncoding RNAs in Drosophila spermatogenesis (2016) Genome Res., 26, pp. 1233-1244
  • Graveley, B.R., Brooks, A.N., Carlson, J.W., Duff, M.O., Landolin, J.M., Yang, L., Artieri, C.G., Booth, B.W., The developmental transcriptome of Drosophila melanogaster (2011) Nature, 471, pp. 473-479
  • Young, R.S., Marques, A.C., Tibbit, C., Haerty, W., Bassett, A.R., Liu, J.-L., Ponting, C.P., Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome (2012) Genome Biol. Evol., 4, pp. 427-442
  • Brown, J.B., Boley, N., Eisman, R., May, G.E., Stoiber, M.H., Duff, M.O., Booth, B.W., Suzuki, A.M., Diversity and dynamics of the Drosophila transcriptome (2014) Nature, 512, pp. 393-399
  • Melé, M., Mattioli, K., Mallard, W., Shechner, D.M., Gerhardinger, C., Rinn, J.L., Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs (2017) Genome Res., 27, pp. 27-37
  • Chen, B., Zhang, Y., Zhang, X., Jia, S., Chen, S., Kang, L., Genome-wide identification and developmental expression profiling of long noncoding RNAs during Drosophila metamorphosis (2016) Sci. Rep., 6, p. 23330
  • Nyberg, K.G., Machado, C.A., Comparative expression dynamics of intergenic long noncoding RNAs in the genus Drosophila (2016) Genome Biol. Evol., 8, pp. 1839-1858
  • Bonn, S., Zinzen, R.P., Girardot, C., Gustafson, E.H., Perez-Gonzalez, A., Delhomme, N., Ghavi-Helm, Y., Furlong, E.E.M., Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development (2012) Nat. Genet., 44, pp. 148-156
  • Lu, B., Zeng, Z., Shi, T., Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-seq (2013) Sci. China Life Sci., 56, pp. 143-155
  • Delás, M.J., Sabin, L.R., Dolzhenko, E., Knott, S.R., Munera Maravilla, E., Jackson, B.T., Wild, S.A., Zhou, M., lncRNA requirements for mouse acute myeloid leukemia and normal differentiation (2017) eLife, 6, p. e25607
  • Liu, S.J., Nowakowski, T.J., Pollen, A.A., Lui, J.H., Horlbeck, M.A., Attenello, F.J., He, D., Lim, D.A., Single-cell analysis of long non-coding RNAs in the developing human neocortex (2016) Genome Biol., 17, p. 67
  • Mirsafian, H., Manda, S.S., Mitchell, C.J., Sreenivasamurthy, S., Ripen, A.M., Mohamad, S.B., Merican, A.F., Pandey, A., Long non-coding RNA expression in primary human monocytes (2016) Genomics, 108, pp. 37-45
  • Wang, L., Park, H.J., Dasari, S., Wang, S., Kocher, J.P., Li, W., CPAT: coding-potential assessment tool using an alignment-free logistic regression model (2013) Nucleic Acids Res., 41, p. e74
  • Lin, M.F., Jungreis, I., Kellis, M., PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions (2011) Bioinformatics, 27, pp. i275-i282
  • Plaza, S., Menschaert, G., Payre, F., In search of lost small peptides (2017) Annu. Rev. Cell Dev. Biol., 33, pp. 391-416
  • Heyn, P., Kircher, M., Dahl, A., Kelso, J., Tomancak, P., Kalinka, A.T., Neugebauer, K.M., The earliest transcribed zygotic genes are short, newly evolved, and different across species (2014) Cell Rep., 6, pp. 285-292
  • Artieri, C.G., Fraser, H.B., Transcript length mediates developmental timing of gene expression across Drosophila (2014) Mol. Biol. Evol., 31, pp. 2879-2889
  • Wilk, R., Hu, J., Blotsky, D., Krause, H.M., Diverse and pervasive subcellular distributions for both coding and long noncoding RNAs (2016) Genes Dev., 30, pp. 594-609
  • Gratz, S.J., Ukken, F.P., Rubinstein, C.D., Thiede, G., Donohue, L.K., Cummings, A.M., O'Connor-Giles, K.M., Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila (2014) Genetics, 196, pp. 961-971
  • Quintero-Cadena, P., Sternberg, P.W., Enhancer sharing promotes neighborhoods of transcriptional regulation across eukaryotes (2016) G3 (Bethesda), 6, pp. 4167-4174
  • Sigova, A.A., Mullen, A.C., Molinie, B., Gupta, S., Orlando, D.A., Guenther, M.G., Almada, A.E., Young, R.A., Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 2876-2881
  • Core, L.J., Waterfall, J.J., Gilchrist, D.A., Fargo, D.C., Kwak, H., Adelman, K., Lis, J.T., Defining the status of RNA polymerase at promoters (2012) Cell Rep., 2, pp. 1025-1035
  • Reim, I., Frasch, M., The Dorsocross T-box genes are key components of the regulatory network controlling early cardiogenesis in Drosophila (2005) Development, 132, pp. 4911-4925
  • Hamaguchi, T., Yabe, S., Uchiyama, H., Murakami, R., Drosophila Tbx6-related gene, Dorsocross, mediates high levels of Dpp and Scw signal required for the development of amnioserosa and wing disc primordium (2004) Dev. Biol., 265, pp. 355-368
  • Reim, I., Lee, H.H., Frasch, M., The T-box-encoding Dorsocross genes function in amnioserosa development and the patterning of the dorsolateral germ band downstream of Dpp (2003) Development, 130, pp. 3187-3204
  • Lagha, M., Bothma, J.P., Levine, M., Mechanisms of transcriptional precision in animal development (2012) Trends Genet., 28, pp. 409-416
  • Mackay, T.F., Richards, S., Stone, E.A., Barbadilla, A., Ayroles, J.F., Zhu, D., Casillas, S., Cridland, J.M., The Drosophila melanogaster genetic reference panel (2012) Nature, 482, pp. 173-178
  • Kaessmann, H., Origins, evolution, and phenotypic impact of new genes (2010) Genome Res., 20, pp. 1313-1326
  • Kondo, S., Vedanayagam, J., Mohammed, J., Eizadshenass, S., Kan, L., Pang, N., Aradhya, R., Lai, E.C., New genes often acquire male-specific functions but rarely become essential in Drosophila (2017) Genes Dev., 31, pp. 1841-1846
  • Chen, S., Zhang, Y.E., Long, M., New genes in Drosophila quickly become essential (2010) Science, 330, pp. 1682-1685
  • Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Hölper, S., Krüger, M., Stainier, D.Y., Genetic compensation induced by deleterious mutations but not gene knockdowns (2015) Nature, 524, pp. 230-233
  • Mercer, T.R., Dinger, M.E., Sunkin, S.M., Mehler, M.F., Mattick, J.S., Specific expression of long noncoding RNAs in the mouse brain (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 716-721
  • Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Gingeras, T.R., STAR: ultrafast universal RNA-seq aligner (2013) Bioinformatics, 29, pp. 15-21
  • Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Lieber, M., De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis (2013) Nat. Protoc., 8, pp. 1494-1512
  • Wu, T.D., Watanabe, C.K., GMAP: a genomic mapping and alignment program for mRNA and EST sequences (2005) Bioinformatics, 21, pp. 1859-1875
  • Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Pachter, L., Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation (2010) Nat. Biotechnol., 28, pp. 511-515
  • Love, M.I., Huber, W., Anders, S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 (2014) Genome Biol., 15, p. 550
  • Khodor, Y.L., Rodriguez, J., Abruzzi, K.C., Tang, C.H.A., Marr, M.T., 2nd, Rosbash, M., Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila (2011) Genes Dev., 25, pp. 2502-2512
  • Schor, I.E., Degner, J.F., Harnett, D., Cannavò, E., Casale, F.P., Shim, H., Garfield, D.A., Furlong, E.E., Promoter shape varies across populations and affects promoter evolution and expression noise (2017) Nat. Genet., 49, pp. 550-558
  • Arvey, A., Hermann, A., Hsia, C.C., Ie, E., Freund, Y., McGinnis, W., Minimizing off-target signals in RNA fluorescent in situ hybridization (2010) Nucleic Acids Res., 38, p. e115
  • Cannavò, E., Koelling, N., Harnett, D., Garfield, D., Casale, F.P., Ciglar, L., Gustafson, H.E., Degner, J.F., Genetic variants regulating expression levels and isoform diversity during embryogenesis (2017) Nature, 541, pp. 402-406
  • Davis, M.P., Carrieri, C., Saini, H.K., van Dongen, S., Leonardi, T., Bussotti, G., Monahan, J.M., Rappsilber, J., Transposon-driven transcription is a conserved feature of vertebrate spermatogenesis and transcript evolution (2017) EMBO Rep., 18, pp. 1231-1247
  • Pauli, A., Valen, E., Lin, M.F., Garber, M., Vastenhouw, N.L., Levin, J.Z., Fan, L., Schier, A.F., Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis (2012) Genome Res., 22, pp. 577-591
  • Zinzen, R.P., Girardot, C., Gagneur, J., Braun, M., Furlong, E.E.M., Combinatorial binding predicts spatio-temporal cis-regulatory activity (2009) Nature, 462, pp. 65-70
  • Junion, G., Spivakov, M., Girardot, C., Braun, M., Gustafson, E.H., Birney, E., Furlong, E.E., A transcription factor collective defines cardiac cell fate and reflects lineage history (2012) Cell, 148, pp. 473-486
  • Gallo, S.M., Gerrard, D.T., Miner, D., Simich, M., Des Soye, B., Bergman, C.M., Halfon, M.S., REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila (2011) Nucleic Acids Res., 39, pp. D118-D123
  • Kvon, E.Z., Kazmar, T., Stampfel, G., Yáñez-Cuna, J.O., Pagani, M., Schernhuber, K., Dickson, B.J., Stark, A., Genome-scale functional characterization of Drosophila developmental enhancers in vivo (2014) Nature, 512, pp. 91-95

Citas:

---------- APA ----------
Schor, I.E., Bussotti, G., Maleš, M., Forneris, M., Viales, R.R., Enright, A.J. & Furlong, E.E.M. (2018) . Non-coding RNA Expression, Function, and Variation during Drosophila Embryogenesis. Current Biology, 28(22), 3547-3561.e9.
http://dx.doi.org/10.1016/j.cub.2018.09.026
---------- CHICAGO ----------
Schor, I.E., Bussotti, G., Maleš, M., Forneris, M., Viales, R.R., Enright, A.J., et al. "Non-coding RNA Expression, Function, and Variation during Drosophila Embryogenesis" . Current Biology 28, no. 22 (2018) : 3547-3561.e9.
http://dx.doi.org/10.1016/j.cub.2018.09.026
---------- MLA ----------
Schor, I.E., Bussotti, G., Maleš, M., Forneris, M., Viales, R.R., Enright, A.J., et al. "Non-coding RNA Expression, Function, and Variation during Drosophila Embryogenesis" . Current Biology, vol. 28, no. 22, 2018, pp. 3547-3561.e9.
http://dx.doi.org/10.1016/j.cub.2018.09.026
---------- VANCOUVER ----------
Schor, I.E., Bussotti, G., Maleš, M., Forneris, M., Viales, R.R., Enright, A.J., et al. Non-coding RNA Expression, Function, and Variation during Drosophila Embryogenesis. Curr. Biol. 2018;28(22):3547-3561.e9.
http://dx.doi.org/10.1016/j.cub.2018.09.026