Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The evolution of complex behavior is driven by the interplay of morphological specializations and neuromuscular control mechanisms [1–3], and it is often difficult to tease apart their respective contributions. Avian vocal learning and associated neural adaptations are thought to have played a major role in bird diversification [4–8], whereas functional significance of substantial morphological diversity of the vocal organ remains largely unexplored. Within the most species-rich order, Passeriformes, “tracheophones” are a suboscine group that, unlike their oscine sister taxon, does not exhibit vocal learning [9] and is thought to phonate with tracheal membranes [10, 11] instead of the two independent sources found in other passerines [12–14]. Here we show tracheophones possess three sound sources, two oscine-like labial pairs and the unique tracheal membranes, which collectively represent the largest described number of sound sources for a vocal organ. Birds with experimentally disabled tracheal membranes were still able to phonate. Instead of the main sound source, the tracheal membranes constitute a morphological specialization, which, through interaction with bronchial labia, contributes to different acoustic features such as spectral complexity, amplitude modulation, and enhanced sound amplitude. In contrast, these same features arise in oscines from neuromuscular control of two labial sources [15–17]. These findings are supported by a modeling approach and provide a clear example for how a morphological adaptation of the tracheophone vocal organ can generate specific, complex sound features. Morphological specialization therefore constitutes an alternative path in the evolution of acoustic diversity to that of oscine vocal learning and complex neural control. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:Evolution of Vocal Diversity through Morphological Adaptation without Vocal Learning or Complex Neural Control
Autor:Garcia, S.M.; Kopuchian, C.; Mindlin, G.B.; Fuxjager, M.J.; Tubaro, P.L.; Goller, F.
Filiación:Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, United States
CECOAL (Centro de Ecología Aplicada del Litoral) CONICET, Corrientes, Argentina
División Ornitología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” MACN-CONICET, Avenida Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, Argentina
Depto. Física, FCEyN, Universidad de Buenos Aires, C. Universitaria, Pab I, Buenos Aires, Argentina
Department of Biology, Wake Forest University, Winston-Salem, NC 27109, United States
Palabras clave:functional morphology; suboscine; syrinx; tracheophone; anatomy and histology; animal; Argentina; evolution; learning; male; Passeriformes; physiology; sound; trachea; vocalization; Animals; Argentina; Biological Evolution; Learning; Male; Passeriformes; Sound; Trachea; Vocalization, Animal
Año:2017
Volumen:27
Número:17
Página de inicio:2677
Página de fin:2683.e3
DOI: http://dx.doi.org/10.1016/j.cub.2017.07.059
Título revista:Current Biology
Título revista abreviado:Curr. Biol.
ISSN:09609822
CODEN:CUBLE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09609822_v27_n17_p2677_Garcia

Referencias:

  • Galis, F., The application of functional morphology to evolutionary studies (1996) Trends Ecol. Evol., 11, pp. 124-129
  • Fuxjager, M.J., Schlinger, B.A., Perspectives on the evolution of animal dancing: a case study of manakins (2015) Curr. Opin. Behav. Sci., 6, pp. 7-12
  • Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R., Lehman, S., How animals move: an integrative view (2000) Science, 288, pp. 100-106
  • Jarvis, E.D., Mirarab, S., Aberer, A.J., Li, B., Houde, P., Li, C., Ho, S.Y.W., Howard, J.T., Whole-genome analyses resolve early branches in the tree of life of modern birds (2014) Science, 346, pp. 1320-1331
  • Whitney, O., Pfenning, A.R., Howard, J.T., Blatti, C.A., Liu, F., Ward, J.M., Wang, R., Mukherjee, S., Core and region-enriched networks of behaviorally regulated genes and the singing genome (2014) Science, 346, p. 1256780
  • Pfenning, A.R., Hara, E., Whitney, O., Rivas, M.V., Wang, R., Roulhac, P.L., Howard, J.T., Ganapathy, G., Convergent transcriptional specializations in the brains of humans and song-learning birds (2014) Science, 346, p. 1256846
  • Zhang, G., Li, C., Li, Q., Li, B., Larkin, D.M., Lee, C., Storz, J.F., Meredith, R.W., Comparative genomics reveals insights into avian genome evolution and adaptation (2014) Science, 346, pp. 1311-1320
  • Verzijden, M.N., ten Cate, C., Servedio, M.R., Kozak, G.M., Boughman, J.W., Svensson, E.I., The impact of learning on sexual selection and speciation (2012) Trends Ecol. Evol., 27, pp. 511-519
  • Touchton, J.M., Seddon, N., Tobias, J.A., Captive rearing experiments confirm song development without learning in a tracheophone suboscine bird (2014) PLoS ONE, 9, p. e95746
  • Rüppell, W., Physiologie und Akustik der Vogelstimme (1933) J. Ornithol., 81, pp. 433-542
  • Müller, J., Über die bisher unbekannten typischen Verschiedenheiten der Stimmorgane der Passerinen (1847), pp. 321-391. , Abhandlungen der Königlichen Akademie der Wissenschaften; King, A.S., Functional anatomy of the syrinx (1989) Form and Function in Birds, pp. 105-192. , A.S. King J. McLelland Academic Press
  • Raikow, R.J., Bledsoe, A.H., Phylogeny and evolution of the passerine birds: independent methods of phylo-genetic analysis have produced a well-supported hypothesis of passerine phylogeny, one that has proved particularly useful in ecological and evolutionary studies (2000) Bioscience, 50, pp. 487-499
  • Ames, P.L., (1971) The Morphology of the Syrinx in Passerine Birds, 37. , Peabody Museum of Natural History, Yale University
  • Suthers, R.A., Zollinger, S.A., Mechanisms of song production in songbirds (2008) Neuroscience of Birdsong, pp. 78-98. , H.P. Zeigler P. Marler Cambridge University Press
  • Goller, F., Riede, T., Integrative physiology of fundamental frequency control in birds (2013) J. Physiol. Paris, 107, pp. 230-242
  • Beckers, G.J.L., Bird speech perception and vocal production: a comparison with humans (2011) Hum. Biol., 83, pp. 191-212
  • Goller, F., Larsen, O.N., In situ biomechanics of the syrinx and sound generation in pigeons (1997) J. Exp. Biol., 200, pp. 2165-2176
  • Arneodo, E.M., Perl, Y.S., Mindlin, G.B., Acoustic signatures of sound source-tract coupling (2011) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 83, p. 041920
  • Jensen, K.K., Cooper, B.G., Larsen, O.N., Goller, F., Songbirds use pulse tone register in two voices to generate low-frequency sound (2007) Proc. Biol. Sci., 274, pp. 2703-2710
  • Sitt, J.D., Amador, A., Goller, F., Mindlin, G.B., Dynamical origin of spectrally rich vocalizations in birdsong (2008) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 78, p. 011905
  • Strogatz, S.H., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (2014), Westview press; Suthers, R.A., Contributions to birdsong from the left and right sides of the intact syrinx (1990) Nature, 347, pp. 473-477
  • Suthers, R.A., Goller, F., Hartley, R.S., Motor dynamics of song production by mimic thrushes (1994) J. Neurobiol., 25, pp. 917-936
  • Goller, F., Suthers, R.A., Role of syringeal muscles in controlling the phonology of bird song (1996) J. Neurophysiol., 76, pp. 287-300
  • Goller, F., Suthers, R.A., Role of syringeal muscles in gating airflow and sound production in singing brown thrashers (1996) J. Neurophysiol., 75, pp. 867-876
  • Srivastava, K.H., Elemans, C.P.H., Sober, S.J., Multifunctional and context-dependent control of vocal acoustics by individual muscles (2015) J. Neurosci., 35, pp. 14183-14194
  • Amador, A., Goller, F., Mindlin, G.B., Frequency modulation during song in a suboscine does not require vocal muscles (2008) J. Neurophysiol., 99, pp. 2383-2389
  • Riede, T., Goller, F., Peripheral mechanisms for vocal production in birds - differences and similarities to human speech and singing (2010) Brain Lang., 115, pp. 69-80
  • Greenewalt, C.H., Bird Song: Acoustics and Physiology (1968), Smithsonian Institute Press; Elemans, C.P.H., Mead, A.F., Rome, L.C., Goller, F., Superfast vocal muscles control song production in songbirds (2008) PLoS ONE, 3, p. e2581
  • Uchida, A.M., Meyers, R.A., Cooper, B.G., Goller, F., Fibre architecture and song activation rates of syringeal muscles are not lateralized in the European starling (2010) J. Exp. Biol., 213, pp. 1069-1078
  • Jarvis, E.D., Ribeiro, S., da Silva, M.L., Ventura, D., Vielliard, J., Mello, C.V., Behaviourally driven gene expression reveals song nuclei in hummingbird brain (2000) Nature, 406, pp. 628-632
  • Gahr, M., Neural song control system of hummingbirds: comparison to swifts, vocal learning (Songbirds) and nonlearning (Suboscines) passerines, and vocal learning (Budgerigars) and nonlearning (Dove, owl, gull, quail, chicken) nonpasserines (2000) J. Comp. Neurol., 426, pp. 182-196
  • Alonso, R., Goller, F., Mindlin, G.B., Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension (2014) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 89, p. 032706

Citas:

---------- APA ----------
Garcia, S.M., Kopuchian, C., Mindlin, G.B., Fuxjager, M.J., Tubaro, P.L. & Goller, F. (2017) . Evolution of Vocal Diversity through Morphological Adaptation without Vocal Learning or Complex Neural Control. Current Biology, 27(17), 2677-2683.e3.
http://dx.doi.org/10.1016/j.cub.2017.07.059
---------- CHICAGO ----------
Garcia, S.M., Kopuchian, C., Mindlin, G.B., Fuxjager, M.J., Tubaro, P.L., Goller, F. "Evolution of Vocal Diversity through Morphological Adaptation without Vocal Learning or Complex Neural Control" . Current Biology 27, no. 17 (2017) : 2677-2683.e3.
http://dx.doi.org/10.1016/j.cub.2017.07.059
---------- MLA ----------
Garcia, S.M., Kopuchian, C., Mindlin, G.B., Fuxjager, M.J., Tubaro, P.L., Goller, F. "Evolution of Vocal Diversity through Morphological Adaptation without Vocal Learning or Complex Neural Control" . Current Biology, vol. 27, no. 17, 2017, pp. 2677-2683.e3.
http://dx.doi.org/10.1016/j.cub.2017.07.059
---------- VANCOUVER ----------
Garcia, S.M., Kopuchian, C., Mindlin, G.B., Fuxjager, M.J., Tubaro, P.L., Goller, F. Evolution of Vocal Diversity through Morphological Adaptation without Vocal Learning or Complex Neural Control. Curr. Biol. 2017;27(17):2677-2683.e3.
http://dx.doi.org/10.1016/j.cub.2017.07.059