Artículo

Chan, C.X.; Yang, E.C.; Banerjee, T.; Yoon, H.S.; Martone, P.T.; Estevez, J.M.; Bhattacharya, D. "Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes" (2011) Current Biology. 21(4):328-333
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Plantae comprising red, green (including land plants), and glaucophyte algae are postulated to have a single common ancestor that is the founding lineage of photosynthetic eukaryotes [1, 2]. However, recent multiprotein phylogenies provide little [3, 4] or no [5, 6] support for this hypothesis. This may reflect limited complete genome data available for red algae, currently only the highly reduced genome of Cyanidioschyzon merolae [7], a reticulate gene ancestry [5], or variable gene divergence rates that mislead phylogenetic inference [8]. Here, using novel genome data from the mesophilic Porphyridium cruentum and Calliarthron tuberculosum, we analyze 60,000 novel red algal genes to test the monophyly of red + green (RG) algae and their extent of gene sharing with other lineages. Using a gene-by-gene approach, we find an emerging signal of RG monophyly (supported by ∼50% of the examined protein phylogenies) that increases with the number of distinct phyla and terminal taxa in the analysis. A total of 1,808 phylogenies show evidence of gene sharing between Plantae and other lineages. We demonstrate that a rich mesophilic red algal gene repertoire is crucial for testing controversial issues in eukaryote evolution and for understanding the complex patterns of gene inheritance in protists. © 2011 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes
Autor:Chan, C.X.; Yang, E.C.; Banerjee, T.; Yoon, H.S.; Martone, P.T.; Estevez, J.M.; Bhattacharya, D.
Filiación:Department of Ecology, Evolution, and Natural Resources, Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, United States
Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME 04575, United States
Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
Instituto de Fisiología, Biología Molecular Y Neurociencias (IFIBYNE UBA-CONICET), Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:article; classification; gene expression regulation; genetics; green alga; molecular genetics; nucleotide sequence; phylogeny; physiology; red alga; Chlorophyta; Gene Expression Regulation, Plant; Molecular Sequence Data; Phylogeny; Rhodophyta; algae; Calliarthron tuberculosum; Chlorophyta; Cyanidioschyzon merolae; Embryophyta; Eukaryota; Glaucocystophyceae; Plantae; Porphyridium; Porphyridium purpureum; Protista; Rhodophyta
Año:2011
Volumen:21
Número:4
Página de inicio:328
Página de fin:333
DOI: http://dx.doi.org/10.1016/j.cub.2011.01.037
Título revista:Current Biology
Título revista abreviado:Curr. Biol.
ISSN:09609822
CODEN:CUBLE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09609822_v21_n4_p328_Chan

Referencias:

  • Rodríguez-Ezpeleta, N., Brinkmann, H., Burey, S.C., Roure, B., Burger, G., Löffelhardt, W., Bohnert, H.J., Lang, B.F., Monophyly of primary photosynthetic eukaryotes: Green plants, red algae, and glaucophytes (2005) Curr. Biol., 15, pp. 1325-1330
  • Weber, A.P., Linka, M., Bhattacharya, D., Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor (2006) Eukaryot. Cell, 5, pp. 609-612
  • Patron, N.J., Inagaki, Y., Keeling, P.J., Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages (2007) Curr. Biol., 17, pp. 887-891
  • Burki, F., Shalchian-Tabrizi, K., Minge, M., Skjaeveland, Å., Nikolaev, S.I., Jakobsen, K.S., Pawlowski, J., Phylogenomics reshuf- fles the eukaryotic supergroups (2007) PLoS ONE, 2, pp. e790
  • Baurain, D., Brinkmann, H., Petersen, J., Rodríguez-Ezpeleta, N., Stechmann, A., Demoulin, V., Roger, A.J., Philippe, H., Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles (2010) Mol. Biol. Evol., 27, pp. 1698-1709
  • Nozaki, H., Maruyama, S., Matsuzaki, M., Nakada, T., Kato, S., Misawa, K., Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes (2009) Mol. Phylogenet. Evol., 53, pp. 872-880
  • Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M., Miyagishima, S.-Y., Mori, T., Kuroiwa, T., Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D (2004) Nature, 428 (6983), pp. 653-657. , DOI 10.1038/nature02398
  • Stiller, J.W., Plastid endosymbiosis, genome evolution and the origin of green plants (2007) Trends Plant Sci., 12, pp. 391-396
  • Brandley, M.C., Warren, D.L., Leaché, A.D., McGuire, J.A., Homoplasy and clade support (2009) Syst. Biol., 58, pp. 184-198
  • Sanderson, M.J., Donoghue, M.J., Patterns of variation in levels of homoplasy (1989) Evolution, 43, pp. 1781-1795
  • Li, S., Nosenko, T., Hackett, J.D., Bhattacharya, D., Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates (2006) Mol. Biol. Evol., 23, pp. 663-674
  • Gogarten, J.P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E.J., Bowman, B.J., Manolson, M.F., Oshima, T., Evolution of the vacuolar H+-ATPase: Implications for the origin of eukaryotes (1989) Proc. Natl. Acad. Sci. USA, 86, pp. 6661-6665
  • Chan, C.X., Beiko, R.G., Darling, A.E., Ragan, M.A., Lateral transfer of genes and gene fragments in prokaryotes (2009) Genome Biol. Evol., 1, pp. 429-438
  • Chan, C.X., Darling, A.E., Beiko, R.G., Ragan, M.A., Are protein domains modules of lateral genetic transfer? (2009) PLoS ONE, 4, pp. e4524
  • Lawrence, J.G., Ochman, H., Amelioration of bacterial genomes: Rates of change and exchange (1997) J. Mol. Evol., 44, pp. 383-397
  • Chan, C.X., Beiko, R.G., Ragan, M.A., Detecting recombination in evolving nucleotide sequences (2006) BMC Bioinformatics, 7, p. 412
  • Reyes-Prieto, A., Bhattacharya, D., Phylogeny of Calvin cycle enzymes supports Plantae monophyly (2007) Mol. Phylogenet. Evol., 45, pp. 384-391
  • Tyra, H.M., Linka, M., Weber, A.P., Bhattacharya, D., Host origin of plastid solute transporters in the first photosynthetic eukaryotes (2007) Genome Biol., 8, pp. R212
  • Colleoni, C., Linka, M., Deschamps, P., Handford, M.G., Dupree, P., Weber, A.P.M., Ball, S.G., Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis (2010) Mol. Biol. Evol., 27, pp. 2691-2701
  • Huang, J.L., Gogarten, J.P., Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? (2007) Genome Biol., 8, pp. R99
  • Gross, J., Bhattacharya, D., Mitochondrial and plastid evolution in eukaryotes: An outsiders' perspective (2009) Nat. Rev. Genet., 10, pp. 495-505
  • Parfrey, L.W., Grant, J., Tekle, Y.I., Lasek-Nesselquist, E., Morrison, H.G., Sogin, M.L., Patterson, D.J., Katz, L.A., Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life (2010) Syst. Biol., 59, pp. 518-533
  • Moustafa, A., Beszteri, B., Maier, U.G., Bowler, C., Valentin, K., Bhattacharya, D., Genomic footprints of a cryptic plastid endosymbiosis in diatoms (2009) Science, 324, pp. 1724-1726
  • Frommolt, R., Werner, S., Paulsen, H., Goss, R., Wilhelm, C., Zauner, S., Maier, U.G., Lohr, M., Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis (2008) Mol. Biol. Evol., 25, pp. 2653-2667
  • Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L., BLAST+: Architecture and applications (2009) BMC Bioinformatics, 10, p. 421
  • Huang, X., Madan, A., CAP3: A DNA sequence assembly program (1999) Genome Research, 9 (9), pp. 868-877. , DOI 10.1101/gr.9.9.868
  • Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., Morgenstern, B., AUGUSTUS: A b initio prediction of alternative transcripts (2006) Nucleic Acids Research, 34 (WEB. SERV. ISS), pp. W435-W439. , DOI 10.1093/nar/gkl200
  • Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32, pp. 1792-1797
  • Talavera, G., Castresana, J., Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments (2007) Syst. Biol., 56, pp. 564-577
  • Stamatakis, A., RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models (2006) Bioinformatics, 22, pp. 2688-2690
  • Whelan, S., Goldman, N., A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach (2001) Mol. Biol. Evol., 18, pp. 691-699
  • Yang, Z., Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods (1994) J. Mol. Evol., 39, pp. 306-314

Citas:

---------- APA ----------
Chan, C.X., Yang, E.C., Banerjee, T., Yoon, H.S., Martone, P.T., Estevez, J.M. & Bhattacharya, D. (2011) . Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Current Biology, 21(4), 328-333.
http://dx.doi.org/10.1016/j.cub.2011.01.037
---------- CHICAGO ----------
Chan, C.X., Yang, E.C., Banerjee, T., Yoon, H.S., Martone, P.T., Estevez, J.M., et al. "Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes" . Current Biology 21, no. 4 (2011) : 328-333.
http://dx.doi.org/10.1016/j.cub.2011.01.037
---------- MLA ----------
Chan, C.X., Yang, E.C., Banerjee, T., Yoon, H.S., Martone, P.T., Estevez, J.M., et al. "Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes" . Current Biology, vol. 21, no. 4, 2011, pp. 328-333.
http://dx.doi.org/10.1016/j.cub.2011.01.037
---------- VANCOUVER ----------
Chan, C.X., Yang, E.C., Banerjee, T., Yoon, H.S., Martone, P.T., Estevez, J.M., et al. Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr. Biol. 2011;21(4):328-333.
http://dx.doi.org/10.1016/j.cub.2011.01.037