Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Activated hydrochars obtained from the hydrothermal carbonization of orange peels (Citrus sinensis) followed by various thermochemical processing were assessed as adsorbents for emerging contaminants in water. Thermal activation under flows of CO2 or air as well as chemical activation with phosphoric acid were applied to the hydrochars. Their characteristics were analyzed and related to their ability to uptake three pharmaceuticals (diclofenac sodium, salicylic acid and flurbiprofen) considered as emerging contaminants. The hydrothermal carbonization and subsequent activations promoted substantial chemical transformations which affected the surface properties of the activated hydrochars; they exhibited specific surface areas ranging from 300 to ~620m2/g. Morphological characterization showed the development of coral-like microspheres dominating the surface of most hydrochars. Their ability to adsorb the three pharmaceuticals selected was found largely dependent on whether the molecules were ionized or in their neutral form and on the porosity developed by the new adsorbents. © 2015 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants
Autor:Fernandez, M.E.; Ledesma, B.; Román, S.; Bonelli, P.R.; Cukierman, A.L.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2620, Ciudad Universitaria, Buenos Aires, C1428 BGA, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, C1033 AAJ, Argentina
Departamento de Física Aplicada, Universidad de Extremadura, Avda. Elvas s/n, Badajoz, 06006, Spain
Cátedra de Farmacotecnia II, Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113 AAD, Argentina
Palabras clave:Activated hydrochars; Emerging contaminants; Hydrothermal carbonization; Orange peels; Carbon dioxide; Carbonization; Citrus fruits; Contamination; Salicylic acid; Thermochemistry; Activated hydrochars; Chemical transformations; Emerging contaminant; Emerging organic contaminants; Hydrothermal carbonization; Morphological characterization; Orange peels; Thermochemical processing; Chemical activation; adsorbent; carbon dioxide; cellulose; diclofenac; flurbiprofen; hemicellulose; microsphere; organic compound; pectin; phosphoric acid; salicylic acid; volatile agent; biochar; charcoal; nitrogen; organic compound; waste; water; water pollutant; adsorption; charcoal; drug; fruit; ionization; molecular analysis; morphology; organic pollutant; pollution control; porosity; surface area; water pollution; adsorption; Article; biomass; chemical modification; cross linking; decarboxylation; decomposition; depolymerization; hydrophobicity; isotherm; metabolite; molecular weight; plant peel; plant structures; polymerization; porosity; priority journal; surface property; sweet orange; waste water management; water pollutant; chemistry; Citrus; isolation and purification; kinetics; temperature; theoretical model; waste; water pollutant; Anthozoa; Citrus sinensis; Adsorption; Charcoal; Citrus; Diclofenac; Kinetics; Models, Theoretical; Nitrogen; Organic Chemicals; Salicylic Acid; Temperature; Waste Products; Water; Water Pollutants, Chemical
Año:2015
Volumen:183
Página de inicio:221
Página de fin:228
DOI: http://dx.doi.org/10.1016/j.biortech.2015.02.035
Título revista:Bioresource Technology
Título revista abreviado:Bioresour. Technol.
ISSN:09608524
CODEN:BIRTE
CAS:carbon dioxide, 124-38-9, 58561-67-4; cellulose, 61991-22-8, 68073-05-2, 9004-34-6; diclofenac, 15307-79-6, 15307-86-5; flurbiprofen, 5104-49-4; hemicellulose, 63100-39-0, 63100-40-3, 9034-32-6; pectin, 9000-69-5; phosphoric acid, 7664-38-2; salicylic acid, 63-36-5, 69-72-7; charcoal, 16291-96-6; nitrogen, 7727-37-9; water, 7732-18-5; biochar; Charcoal; Diclofenac; Nitrogen; Organic Chemicals; Salicylic Acid; Waste Products; Water; Water Pollutants, Chemical
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09608524_v183_n_p221_Fernandez

Referencias:

  • Akçay, G., Kilinç, E., Akçay, M., The equilibrium and kinetics studies of flurbiprofen adsorption onto tetrabutylammonium montmorillonite (TBAM) (2009) Colloids Surf., A, 335 (1-3), pp. 189-193
  • Ayranci, E., Duman, O., Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification (2006) J. Hazard. Mater., B136, pp. 542-552
  • Bansal, R.C., Goyal, M., (2001) Activated Carbon Adsorption. Ed., , Taylor & Francis, London
  • Carrott, P.J.M., Nabais, J.M.V., Ribeiro Carrott, M.M.L., Menéndez, J.A., Thermal treatments of activated carbon fibers using a microwave furnace (2001) Microporous Mesoporous Mater., 47, pp. 243-252
  • Chen, B., Chen, Z., Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures (2009) Chemosphere, 76, pp. 127-133
  • Delgado, L.F., Charles, P., Glucina, K., Morlay, C., The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon - A review (2012) Sci. Total Environ., 435, pp. 509-525
  • Falco, C., Marco-Lozar, J.P., Salinas-Torres, D., Morallón, E., Cazorla-Amorós, D., Titirici, M.M., Lozano-Castelló, D., Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature (2013) Carbon, 62, pp. 346-355
  • Citrus: world markets and trade (2014), http://apps.fas.usda.gov/psdonline/circulars/citrus.pdf, Consulted on 20th February 2014; Fernandez, M.E., Nunell, G.V., Bonelli, P.R., Cukierman, A.L., Activated carbon developed from orange peels: batch and dynamic competitive adsorption of basic dyes (2014) Ind. Crops Prod., 62, pp. 437-445
  • Funke, A., Ziegler, F., Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering (2010) Biofuels, Bioprod. Biorefin., 4, pp. 160-177
  • Gañán, J., González, J.F., González-García, C.M., Ramiro, A., Sabio, E., Román, S., Air-activated carbons from almond tree pruning: preparation and characterization (2006) Appl. Surf. Sci., 252, pp. 5988-5992
  • Hao, W., Björkman, E., Lilliesträle, M., Hedin, N., Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2 (2013) Appl. Energy, 12, pp. 526-532
  • Ho, Y.S., Review of second-order models for adsorption systems (2006) J. Hazard. Mater., 136, pp. 681-689
  • Jagtoyen, M., Derbyshire, F., Activated carbons from yellow poplar and white oak by H3PO4 activation (1998) Carbon, 36 (7-8), pp. 1085-1097
  • Jodeh, S., Abdelwahab, F., Jaradat, N., Warad, I., Jodehc, W., Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC) (2015) J. Assoc. Arab Univ. Basic Appl. Sci.
  • Li, M., Li, W., Liu, S., Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose (2011) Carbohydr. Res., 346, pp. 999-1004
  • Lu, X., Flora, J.R.V., Berge, N.D., Influence of process water quality on hydrothermal carbonization of cellulose (2014) Bioresour. Technol., 154, pp. 229-239
  • Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C., A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment (2014) Sci. Total Environ., pp. 619-641
  • Lynam, J.G., Coronella, C.J., Yan, W., Reza, M.T., Vasquez, V.R., Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass (2011) Bioresour. Technol., 102, pp. 6192-6199
  • Mizaee, F., Hadadiyan, E., Approximate solutions for mixed nonlinear Volterra-Fredholm type integral equations via modified Block Pulse functions (2012) J. Assoc. Arab. Univ. Basic Appl. Sci., 12, pp. 65-73
  • Oliveira, I., Blöhse, D., Ramke, H.G., Hydrothermal carbonization of agricultural residues (2013) Bioresour. Technol., 142, pp. 138-146
  • Osmani, O., Hughes, H., McLoughlin, P., Probing the recognition of molecularly imprinted polymer beads (2012) J. Mater. Sci., 47, pp. 2218-2227
  • Parshetti, G.K., Hoekman, S.K., Balasubramanian, R., Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches (2013) Bioresour. Technol., 135, pp. 683-689
  • Rakić, V., Rac, V., Kmar, M., Otman, O., Auroux, A., The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons (2015) J. Hazard. Mater., 282, pp. 141-149
  • Rodriguez Reinoso, F., Production and applications of activated carbons (2002) Handbook of Porous Solids, pp. 1766-1827. , Wiley/VCH, F. Schüth, K.S.W. Sing, J. Weitkamp (Eds.)
  • Román, S., Nabais, J.M.V., Laginhas, C., Ledesma, B., González, J.F., Hydrothermal carbonization as an effective way of densifying the energy content of biomass (2012) Fuel Process. Technol., 103, pp. 78-83
  • Román, S., Valente Nabais, J.M., Ledesma, B., González, J.F., Laginhas, C., Titirici, M.M., Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes (2013) Microporous Mesoporous Mater., 165, pp. 127-133
  • Schiewer, S., Iqbal, M., The role of pectin in Cd binding by orange peel biosorbents: a comparison of peels, depectinated peels and pectic acid (2010) J. Hazard. Mater., 177, pp. 899-907
  • Sevilla, M., Maciá-Agulló, J.A., Fuertes, A.B., Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products (2011) Biomass Bioenergy, 35, pp. 3152-3159
  • Sotelo, J.L., Rodríguez, A., Álvarez, S., García, J., Removal of caffeine and diclofenac on activated carbon in fixed bed column (2012) Chem. Eng. Res. Des., 90, pp. 967-974
  • Thirumavalavan, M., Lai, Y.L., Lee, J.F., Fourier transform infrared spectroscopic analysis of fruit peels before and after the adsorption of heavy metal ions from aqueous solution (2011) J. Chem. Eng. Data, 56, pp. 2249-2255
  • Titirici, M.M., Thomas, A., Yu, S.H., Müller, J.O., Antonietti, M., A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization (2007) Chem. Mater., 19, pp. 4205-4212
  • Verlicchi, P., Al Aukidy, M., Zambello, E., Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment - A review (2012) Sci. Total Environ., 429, pp. 123-155
  • Vernersson, T., Bonelli, P.R., Cerrella, E.G., Cukierman, A.L., Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation (2002) Bioresour. Technol., 83, pp. 95-104
  • White, R.J., Budarin, V.L., Clark, J.H., Pectin-derived porous materials (2010) Chem. Eur. J., 16, pp. 1326-1335

Citas:

---------- APA ----------
Fernandez, M.E., Ledesma, B., Román, S., Bonelli, P.R. & Cukierman, A.L. (2015) . Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Bioresource Technology, 183, 221-228.
http://dx.doi.org/10.1016/j.biortech.2015.02.035
---------- CHICAGO ----------
Fernandez, M.E., Ledesma, B., Román, S., Bonelli, P.R., Cukierman, A.L. "Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants" . Bioresource Technology 183 (2015) : 221-228.
http://dx.doi.org/10.1016/j.biortech.2015.02.035
---------- MLA ----------
Fernandez, M.E., Ledesma, B., Román, S., Bonelli, P.R., Cukierman, A.L. "Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants" . Bioresource Technology, vol. 183, 2015, pp. 221-228.
http://dx.doi.org/10.1016/j.biortech.2015.02.035
---------- VANCOUVER ----------
Fernandez, M.E., Ledesma, B., Román, S., Bonelli, P.R., Cukierman, A.L. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Bioresour. Technol. 2015;183:221-228.
http://dx.doi.org/10.1016/j.biortech.2015.02.035