Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Summary Plants regulate their time to flowering by gathering information from the environment. Photoperiod and temperature are among the most important environmental variables. Sub-optimal, but not near-freezing, temperatures regulate flowering through the thermosensory pathway, which overlaps with the autonomous pathway. Here we show that ambient temperature regulates flowering by two genetically distinguishable pathways, one requiring TFL1 and another requiring ELF3. The delay in flowering time observed at lower temperatures was partially suppressed in single elf3 and tfl1 mutants, whereas double elf3 tfl1 mutants were insensitive to temperature. tfl1 mutations abolished the temperature response in cryptochrome mutants that are deficient in photoperiod perception, but not in phyB mutants, which have a constitutive photoperiodic response. In contrast to tfl1, elf3 mutations were able to suppress the temperature response in phyB mutants, but not in cryptochrome mutants. Gene expression profiles revealed that the tfl1 and elf3 effects are due to the activation of different sets of genes, and identified CCA1 and SOC1/AGL20 as being important cross-talk points. Finally, genome-wide gene expression analysis strongly suggests a general and complementary role for ELF3 and TFL1 in temperature signalling. © 2009 Blackwell Publishing Ltd.

Registro:

Documento: Artículo
Título:A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature
Autor:Strasser, B.; Alvarez, M.J.; Califano, A.; Cerdán, P.D.
Filiación:Fundación Instituto Leloir, IIBBA-CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1405BWE Buenos Aires, Argentina
Center for Computational Biology and Bioinformatics (C2B2), Columbia University, 1130 St Nicholas Ave, New York, NY 10032, United States
Palabras clave:Ambient temperature; Arabidopsis; ELF3; Flowering; Microarrays; TFL1; Arabidopsis protein; ELF3 protein, Arabidopsis; plant RNA; TFL1 protein, Arabidopsis; transcription factor; Arabidopsis; article; DNA microarray; flower; gene expression regulation; genetics; growth, development and aging; metabolism; photoperiodicity; temperature; Arabidopsis; Arabidopsis Proteins; Flowers; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Oligonucleotide Array Sequence Analysis; Photoperiod; RNA, Plant; Temperature; Transcription Factors; Arabidopsis
Año:2009
Volumen:58
Número:4
Página de inicio:629
Página de fin:640
DOI: http://dx.doi.org/10.1111/j.1365-313X.2009.03811.x
Título revista:Plant Journal
Título revista abreviado:Plant J.
ISSN:09607412
CODEN:PLJUE
CAS:Arabidopsis Proteins; ELF3 protein, Arabidopsis; RNA, Plant; TFL1 protein, Arabidopsis; Transcription Factors
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09607412_v58_n4_p629_Strasser

Referencias:

  • Ahn, J.H., Miller, D., Winter, V.J., Banfield, M.J., Jeong, H.L., So, Y.Y., Henz, S.R., Weigel, D., A divergent external loop confers antagonistic activity on floral regulators FT and TFL1 (2006) EMBO Journal, 25 (3), pp. 605-614. , DOI 10.1038/sj.emboj.7600950, PII 7600950
  • Balasubramanian, S., Sureshkumar, S., Lempe, J., Weigel, D., Potent induction of Arabidopsis thaliana flowering by elevated growth temperature (2006) PLoS Genet., 2, p. 106
  • Blazquez, M.A., Ahn, J.H., Weigel, D., A thermosensory pathway controlling flowering time in Arabidopsis thaliana (2003) Nature Genetics, 33 (2), pp. 168-171. , DOI 10.1038/ng1085
  • Boss, P.K., Bastow, R.M., Mylne, J.S., Dean, C., Multiple pathways in the decision to flower: Enabling, promoting, and resetting (2004) Plant Cell, 16 (SUPPL.), pp. S18-S31. , DOI 10.1105/tpc.015958
  • Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R., Coen, E., Inflorescence commitment and architecture in Arabidopsis (1997) Science, 275 (5296), pp. 80-83. , DOI 10.1126/science.275.5296.80
  • Buchovsky, A.S., Strasser, B., Cerdan, P.D., Casal, J.J., Jiang, S., Suppression of pleiotropic effects of functional CRYPTOCHROME genes by TERMINAL FLOWER 1 (2008) Genetics, 180, pp. 1467-1474
  • Conti, L., Bradley, D., TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture (2007) Plant Cell, 19 (3), pp. 767-778. , http://www.plantcell.org/cgi/reprint/19/3/767, DOI 10.1105/tpc.106.049767
  • Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Coupland, G., FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis (2007) Science, 316 (5827), pp. 1030-1033. , DOI 10.1126/science.1141752
  • Covington, M.F., Panda, S., Xing Liang Liu, Strayer, C.A., Wagner, D.R., Kay, S.A., ELF3 modulates resetting of the circadian clock in Arabidopsis (2001) Plant Cell, 13 (6), pp. 1305-1315. , DOI 10.1105/tpc.13.6.1305
  • Doyle, M.R., Davis, S.J., Bastow, R.M., McWatters, H.G., Kozma-Bognar, L., Nagy, F., Millar, A.J., Amasino, R.M., The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana (2002) Nature, 419, pp. 74-77
  • El-Din El-Assal, S., Alonso-Blanco, C., Peeters, A.J.M., Wagemaker, C., Weller, J.L., Koornneef, M., The Role of Cryptochrome 2 in Flowering in Arabidopsis (2003) Plant Physiology, 133 (4), pp. 1504-1516. , DOI 10.1104/pp.103.029819
  • Fowler, S.G., Cook, D., Thomashow, M.F., Low temperature induction of arabidopsis CBF1, 2, and 3 is gated by the circadian clock (2005) Plant Physiology, 137 (3), pp. 961-968. , DOI 10.1104/pp.104.058354
  • Gautier, L., Cope, L., Bolstad, B.M., Irizarry, R.A., Affy - Analysis of Affymetrix GeneChip data at the probe level (2004) Bioinformatics, 20 (3), pp. 307-315. , DOI 10.1093/bioinformatics/btg405
  • Halliday, K.J., Whitelam, G.C., Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE (2003) Plant Physiology, 131 (4), pp. 1913-1920. , DOI 10.1104/pp.102.018135
  • Halliday, K.J., Salter, M.G., Thingnaes, E., Whitelam, G.C., Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT (2003) Plant Journal, 33 (5), pp. 875-885. , DOI 10.1046/j.1365-313X.2003.01674.x
  • Hanzawa, Y., Money, T., Bradley, D., A single amino acid converts a repressor to an activator of flowering (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (21), pp. 7748-7753. , DOI 10.1073/pnas.0500932102
  • He, Y., Amasino, R.M., Role of chromatin modification in flowering-time control (2005) Trends in Plant Science, 10 (1), pp. 30-35. , DOI 10.1016/j.tplants.2004.11.003, PII S1360138504002705
  • Hicks, K.A., Albertson, T.M., Wagner, D.R., EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in arabidopsis (2001) Plant Cell, 13 (6), pp. 1281-1292. , DOI 10.1105/tpc.13.6.1281
  • Holm, M., Ma, L.-G., Qu, L.-J., Deng, X.-W., Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis (2002) Genes and Development, 16 (10), pp. 1247-1259. , DOI 10.1101/gad.969702
  • Imaizumi, T., Schultz, T.F., Harmon, F.G., Ho, L.A., Kay, S.A., Plant science: FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis (2005) Science, 309 (5732), pp. 293-297. , DOI 10.1126/science.1110586
  • Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P., Exploration, normalization, and summaries of high density oligonucleotide array probe level data (2003) Biostatistics, 4, pp. 249-264
  • Jaeger, K.E., Wigge, P.A., FT Protein Acts as a Long-Range Signal in Arabidopsis (2007) Current Biology, 17 (12), pp. 1050-1054. , DOI 10.1016/j.cub.2007.05.008, PII S0960982207013887
  • Jang, S., Marchal, V., Panigrahi, K.C., Wenkel, S., Soppe, W., Deng, X.W., Valverde, F., Coupland, G., Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response (2008) EMBO J., 27, pp. 1277-1288
  • Kandasamy, M.K., Deal, R.B., McKinney, E.C., Meagher, R.B., Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence (2005) Plant Journal, 41 (6), pp. 845-858. , DOI 10.1111/j.1365-313X.2005.02345.x
  • Kim, S.Y., He, Y., Jacob, Y., Noh, Y.S., Michaels, S., Amasino, R., Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase (2005) Plant Cell, 17, pp. 3301-3310
  • Kim, W.-Y., Hicks, K.A., Somers, D.E., Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time (2005) Plant Physiology, 139 (3), pp. 1557-1569. , DOI 10.1104/pp.105.067173
  • Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J., Golub, T.R., The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease (2006) Science, 313 (5795), pp. 1929-1935. , DOI 10.1126/science.1132939
  • Laubinger, S., Marchal, V., Gentillhomme, J., Wenkel, S., Adrian, J., Jang, S., Kulajta, C., Hoecker, U., Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability (2006) Development, 133 (16), pp. 3213-3222. , DOI 10.1242/dev.02481
  • Ledger, S., Strayer, C., Ashton, F., Kay, S.A., Putterill, J., Analysis of the function of two circadian-regulated CONSTANS-LIKE genes (2001) Plant Journal, 26 (1), pp. 15-22. , DOI 10.1046/j.1365-313X.2001.01003.x
  • Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, J.S., Lee, I., The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis (2000) Genes Dev., 14, pp. 2366-2376
  • Jeong, H.L., Seong, J.Y., Soo, H.P., Hwang, I., Jong, S.L., Ji, H.A., Role of SVP in the control of flowering time by ambient temperature in Arabidopsis (2007) Genes and Development, 21 (4), pp. 397-402. , http://www.genesdev.org/cgi/reprint/21/4/397, DOI 10.1101/gad.1518407
  • Lee, J.H., Lee, J.S., Ahn, J.H., Ambient temperature signaling in plants: An emerging field in the regulation of flowering time (2008) J. Plant Biol., 51, pp. 321-326
  • Li, D., Liu, C., Shen, L., Wu, Y., Chen, H., Robertson, M., Helliwell, C.A., Yu, H., A repressor complex governs the integration of flowering signals in Arabidopsis (2008) Dev. Cell, 15, pp. 110-120
  • Xing Liang Liu, Covington, M.F., Fankhauser, C., Chory, J., Wagner, D.R., ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway (2001) Plant Cell, 13 (6), pp. 1293-1304. , DOI 10.1105/tpc.13.6.1293
  • Mansilla, M.C., Cybulski, L.E., Albanesi, D., De Mendoza, D., Control of membrane lipid fluidity by molecular thermosensors (2004) Journal of Bacteriology, 186 (20), pp. 6681-6688. , DOI 10.1128/JB.186.20.6681-6688.2004
  • Mathieu, J., Warthmann, N., Kuttner, F., Schmid, M., Export of FT Protein from Phloem Companion Cells Is Sufficient for Floral Induction in Arabidopsis (2007) Current Biology, 17 (12), pp. 1055-1060. , DOI 10.1016/j.cub.2007.05.009, PII S0960982207013899
  • Mazzella, M.A., Bertero, D., Casal, J.J., Temperature-dependent internode elongation in vegetative plants of Arabidopsis thaliana lacking phytochrome B and cryptochrome 1 (2000) Planta, 210 (3), pp. 497-501
  • McWatters, H.G., Bastow, R.M., Hall, A., Millar, A.J., The ELF3 zeitnhmer regulates light signalling to the circadian clock (2000) Nature, 408 (6813), pp. 716-720. , DOI 10.1038/35047079
  • Mizoguchi, T., Wright, L., Fujiwara, S., Cremer, F., Lee, K., Onouchi, H., Mouradov, A., Coupland, G., Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis (2005) Plant Cell, 17 (8), pp. 2255-2270. , DOI 10.1105/tpc.105.033464
  • Mockler, T.C., Guo, H., Yang, H., Duong, H., Lin, C., Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction (1999) Development, 126 (10), pp. 2073-2082
  • Mockler, T., Yang, H., Yu, X., Parikh, D., Cheng, Y.-C., Dolan, S., Lin, C., Regulation of photoperiodic flowering by Arabidopsis photoreceptors (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (4), pp. 2140-2145. , DOI 10.1073/pnas.0437826100
  • Neff, M.M., Neff, J.D., Chory, J., Pepper, A.E., dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: Experimental applications in Arabidopsis thaliana genetics (1998) Plant Journal, 14 (3), pp. 387-392. , DOI 10.1046/j.1365-313X.1998.00124.x
  • Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M., Lepiniec, L., The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques (2000) Plant Cell, 12, pp. 1863-1878
  • Niwa, Y., Ito, S., Nakamichi, N., Mizoguchi, T., Niinuma, K., Yamashino, T., Mizuno, T., Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana (2007) Plant and Cell Physiology, 48 (7), pp. 925-937. , DOI 10.1093/pcp/pcm067
  • Page, T., Macknight, R., Yang, C.-H., Dean, C., Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation (1999) Plant Journal, 17 (3), pp. 231-239
  • Penfield, S., Temperature perception and signal transduction in plants (2008) New Phytol., 179, pp. 615-628
  • (2008) R: A Language and Environment for Statistical Computing., , R-Development Core Team. Vienna. R Foundation for Statistical Computing
  • Reed, J.W., Nagpal, P., Bastow, R.M., Solomon, K.S., Dowson-Day, M.J., Elumalai, R.P., Millar, A.J., Independent action of ELF3 and phyB to control hypocotyl elongation and flowering time (2000) Plant Physiology, 122 (4), pp. 1149-1160
  • Ruiz-Garcia, L., Madueno, F., Wilkinson, M., Haughn, G., Saunas, J., Martinez-Zapater, J.M., Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis (1997) Plant Cell, 9 (11), pp. 1921-1934. , DOI 10.1105/tpc.9.11.1921
  • Samach, A., Wigge, P.A., Ambient temperature perception in plants (2005) Current Opinion in Plant Biology, 8 (5), pp. 483-486. , DOI 10.1016/j.pbi.2005.07.011, PII S1369526605001019, Cell Signalling and Gene Regulation
  • Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Krober, S., Amasino, R.A., Coupland, G., The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis (2006) Genes Dev., 20, pp. 898-912
  • Shannon, S., Meeks-Wagner, D.R., Genetic interactions that regulate inflorescence development in arabidopsis (1993) Plant Cell, 5 (6), pp. 639-655
  • Smyth, G.K., (2005) Limma: Linear Models for Microarray Data., , New York. Springer
  • Eun, J.S., Rojas-Pierce, M., Pan, S., Carter, C., Serrano-Mislata, A., Madueno, F., Rojo, E., Raikhel, N.V., The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (47), pp. 18801-18806. , http://www.pnas.org/cgi/reprint/104/47/18801, DOI 10.1073/pnas.0708236104
  • Soppe, W.J., Bentsink, L., Koornneef, M., The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana (1999) Development, 126, pp. 4763-4770
  • Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., Coupland, G., CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis (2001) Nature, 410 (6832), pp. 1116-1120. , DOI 10.1038/35074138
  • Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Mesirov, J.P., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (43), pp. 15545-15550. , DOI 10.1073/pnas.0506580102
  • Tamaki, S., Matsuo, S., Hann, L.W., Yokoi, S., Shimamoto, K., Hd3a protein is a mobile flowering signal in rice (2007) Science, 316 (5827), pp. 1033-1036. , DOI 10.1126/science.1141753
  • Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., Coupland, G., Photoreceptor Regulation of CONSTANS Protein in Photoperiodic Flowering (2004) Science, 303 (5660), pp. 1003-1006. , DOI 10.1126/science.1091761
  • Wang, Z.-Y., Tobin, E.M., Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression (1998) Cell, 93 (7), pp. 1207-1217. , DOI 10.1016/S0092-8674(00)81464-6
  • Yanovsky, M.J., Kay, S.A., Molecular basis of seasonal time measurement in Arabidopsis (2002) Nature, 419, pp. 308-312
  • Yoo, S.K., Chung, K.S., Kim, J., Lee, J.H., Hong, S.M., Yoo, S.J., Yoo, S.Y., Ahn, J.H., CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis (2005) Plant Physiology, 139 (2), pp. 770-778. , DOI 10.1104/pp.105.066928
  • Yoo, S.Y., Kim, Y., Kim, S.Y., Lee, J.S., Ahn, J.H., Control of flowering time and cold response by a NAC-domain protein in Arabidopsis (2007) PLoS ONE, 2, p. 642
  • Zhao, Z., Yu, Y., Meyer, D., Wu, C., Shen, W.-H., Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36 (2005) Nature Cell Biology, 7 (12), pp. 1156-1160. , DOI 10.1038/ncb1329, PII N1329

Citas:

---------- APA ----------
Strasser, B., Alvarez, M.J., Califano, A. & Cerdán, P.D. (2009) . A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature. Plant Journal, 58(4), 629-640.
http://dx.doi.org/10.1111/j.1365-313X.2009.03811.x
---------- CHICAGO ----------
Strasser, B., Alvarez, M.J., Califano, A., Cerdán, P.D. "A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature" . Plant Journal 58, no. 4 (2009) : 629-640.
http://dx.doi.org/10.1111/j.1365-313X.2009.03811.x
---------- MLA ----------
Strasser, B., Alvarez, M.J., Califano, A., Cerdán, P.D. "A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature" . Plant Journal, vol. 58, no. 4, 2009, pp. 629-640.
http://dx.doi.org/10.1111/j.1365-313X.2009.03811.x
---------- VANCOUVER ----------
Strasser, B., Alvarez, M.J., Califano, A., Cerdán, P.D. A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature. Plant J. 2009;58(4):629-640.
http://dx.doi.org/10.1111/j.1365-313X.2009.03811.x