Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The wheat spikelet meristem differentiates into up to 12 floret primordia, but many of them fail to reach the fertile floret stage at anthesis. We combined microarray, biochemical and anatomical studies to investigate floret development in wheat plants grown in the field under short or long days (short days extended with low-fluence light) after all the spikelets had already differentiated. Long days accelerated spike and floret development and greening, and the expression of genes involved in photosynthesis, photoprotection and carbohydrate metabolism. These changes started while the spike was in the light-depleted environment created by the surrounding leaf sheaths. Cell division ceased in the tissues of distal florets, which interrupted their normal developmental progression and initiated autophagy, thus decreasing the number of fertile florets at anthesis. A massive decrease in the expression of genes involved in cell proliferation, a decrease in soluble carbohydrate levels, and an increase in the expression of genes involved in programmed cell death accompanied anatomical signs of cell death, and these effects were stronger under long days. We propose a model in which developmentally generated sugar starvation triggers floret autophagy, and long days intensify these processes due to the increased carbohydrate consumption caused by the accelerated plant development. © 2008 The Authors.

Registro:

Documento: Artículo
Título:Autophagy regulated by day length determines the number of fertile florets in wheat
Autor:Ghiglione, H.O.; Gonzalez, F.G.; Serrago, R.; Maldonado, S.B.; Chilcott, C.; Curá, J.A.; Miralles, D.J.; Zhu, T.; Casal, J.J.
Filiación:Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, 1417 Buenos Aires, Argentina
Cátedra de Cerealicultura, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, 1417 Buenos Aires, Argentina
IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417 Buenos Aires, Argentina
Departamento de Biodiversidad Y Biología Experimental, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Av. Intendente Guiraldes s/n, C1428EHA-Buenos Aires, Argentina
Syngenta Biotechnology Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709, United States
CONICET, EEA INTA Pergamino, Ruta 32 km 4.5, (B2700WAA), Pergamino, Buenos Aires, Argentina
Palabras clave:Autophagy; Floret development; Transcriptome; Wheat; plant RNA; sucrose; article; autophagy; carbohydrate metabolism; cell death; cell division; cell proliferation; DNA microarray; fertility; flower; gene; gene expression profiling; gene expression regulation; genetics; growth, development and aging; meristem; metabolism; photoperiodicity; photosynthesis; wheat; Autophagy; Carbohydrate Metabolism; Cell Death; Cell Division; Cell Proliferation; Fertility; Flowers; Gene Expression Profiling; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Genes, Plant; Meristem; Oligonucleotide Array Sequence Analysis; Photoperiod; Photosynthesis; RNA, Plant; Sucrose; Triticum; Triticum aestivum
Año:2008
Volumen:55
Número:6
Página de inicio:1010
Página de fin:1024
DOI: http://dx.doi.org/10.1111/j.1365-313X.2008.03570.x
Título revista:Plant Journal
Título revista abreviado:Plant J.
ISSN:09607412
CODEN:PLJUE
CAS:sucrose, 122880-25-5, 57-50-1; RNA, Plant; Sucrose, 57-50-1
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_09607412_v55_n6_p1010_Ghiglione.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09607412_v55_n6_p1010_Ghiglione

Referencias:

  • Aarts, M.G.M., Keijzer, C.J., Stiekema, W.J., Pereira, A., Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility (1995) Plant Cell, 7, pp. 2115-2127
  • Aarts, M.G., Hodge, R., Kalantidis, K., Florack, D., Wilson, Z.A., Mulligan, B.J., Stiekema, W.J., Pereira, A., The ArabidopsisMALESTERILITY 2 protein shares similarity with reductases in elongation/condensation complexes (1997) Plant J., 12, pp. 615-623
  • Albani, D., Sardana, R., Robert, L.S., Altosaar, I., Arnison, P.G., Fabijanski, S.F., A Brassica napus gene family which shows sequence similarity to ascorbate oxidase is expressed in developing pollen. Molecular characterization and analysis of promoter activity in transgenic tobacco plants (1992) Plant J., 2, pp. 331-342
  • Armstrong, S.J., Caryl, A.P., Jones, G.H., Franklin, F.C., Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica (2002) J. Cell Sci., 15, pp. 3645-3655
  • Arnon, D.I., Copper enzymes in isolated chloroplast. Polyphenoloxidase in Beta vulgaris (1949) Plant Physiol., 24, pp. 1-15
  • Baima, S., Possenti, M., Matteucci, A., Wisman, E., Altamura, M.M., Ruberti, I., Morelli, G., The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems (2001) Plant Physiol., 126, pp. 643-655
  • Bellmann, R., Werr, W., Zmhox1a, the product of a novel maize homeobox gene, interacts with the Shrunken 26 bp feedback control element (1992) EMBO J., 11, pp. 3367-3374
  • Bommert, P., Satoh-Nagasawa, N., Jacson, D., Hirano, H.-Y., Genetics and evolution of inflorescence and flower development in grasses (2005) Plant Cell Physiol., 46, pp. 69-78
  • Bots, M., Feron, R., Uehlein, N., Weterings, K., Kaldenhoff, R., Mariani, T., PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development (2005) J. Exp. Bot., 56, pp. 113-121
  • Cesar, M.C., Wilson, J.E., All three isoforms of the voltage-dependent anion channel (VDAC1, VDAC2, and VDAC3) are present in mitochondria from bovine, rabbit, and rat brain (2004) Arch. Biochem. Biophys., 15, pp. 191-196
  • Christie, J.M., Reymond, P., Powell, G.K., Bernasconi, P., Raibekas, A.A., Liscum, E., Briggs, W.R., Arabidopsis NPH1: A flavoprotein with the properties of a photoreceptor for phototropism (1998) Science, 282, pp. 1698-1701
  • Dal Degan, F., Rocher, A., Cameron-Mills, V., Von Wettstein, D., The expression of serine carboxypeptidases during maturation and germination of the barley grain (1994) Proc. Natl Acad. Sci. USA, 16, pp. 8209-8213
  • De Smet, F., Mathys, J., Marchal, K., Thijs, G., De Moor, B., Moreau, Y., Adaptive quality-based clustering of gene expression profiles (2002) Bioinformatics, 18, pp. 735-746
  • Van Doorn, W.G., Woltering, E.J., Many ways to exit? Cell death categories in plants (2005) Trends Plant Sci., 10, pp. 117-122
  • Drea, S., Leader, D.J., Arnold, B.C., Shaw, P., Dolan, L., Doonana, J.H., Systematic spatial analysis of gene expression during wheat caryopsis development (2005) Plant Cell, 17, pp. 2172-2185
  • Fiebig, A., Mayfield, J.A., Miley, N.L., Chau, S., Fischer, R.L., Preuss, D., Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems (2000) Plant Cell, 12, pp. 2001-2008
  • Fischer, R.A., Wheat (1984) Potential Productivity of Field Crops under Different Environments, pp. 129-154. , In. Smith, W.H. Banta, J.J., eds). Los Baños: IRRI, pp
  • Frary, A., Nesbitt, T.C., Grandillo, S., Knaap, E., Cong, B., Liu, J., Meller, J., Tanksley, S.D., Fw2.2: A quantitative trait locus key to the evolution of tomato fruit size (2000) Science, 289, pp. 85-88
  • Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., Ohme-Takagi, M., Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression (2000) Plant Cell, 12, pp. 393-404
  • Gonzalez, F.G., Slafer, G.A., Miralles, D.J., Floret development and spike growth as affected by photoperiod during stem elongation in wheat (2003) Field Crops Res., 81, pp. 29-38
  • Gonzalez, F.G., Slafer, G.A., Miralles, D.J., Floret development and survival in wheat plants exposed to contrasting photoperiod and radiation environments during stem elongation (2005) Funct. Plant Biol., 32, pp. 189-197
  • Gray, J., Wardzala, E., Yang, M., Reinbothe, S., Haller, S., Pauli, F., A small family of LLS1-related non-heme oxygenases in plants with an origin amongst oxygenic photosynthesizers (2004) Plant Mol. Biol., 54, pp. 39-54
  • Hauser, B.A., He, J.Q., Park, S.O., Gasser, C.S., TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis (2000) Development, 127, pp. 2219-2226
  • Ishihara, N., Hamasaki, M., Yokota, S., Suzuki, K., Kamada, Y., Kihara, A., Yoshimori, T., Ohsumi, Y., Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion (2001) Mol. Biol. Cell, 12, pp. 3690-3702
  • Ishikawa, R., Tamaki, S., Yokoi, S., Inagaki, N., Shinomura, T., Takano, M., Shimamoto, K., Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice (2005) Plant Cell, 17, pp. 3326-3336
  • Ito, T., Takahashi, N., Shimura, Y., Okada, K., A serine/threonine protein kinase gene isolated by an in vivo binding procedure using the Arabidopsis floral homeotic gene product, AGAMOUS (1997) Plant Cell Physiol., 38, pp. 248-258
  • Jang, C.S., Lee, M.S., Kim, J.Y., Kim, D.S., Seo, Y.W., Molecular characterization of a cDNA encoding putative calcium binding protein, HvCaBP1, induced during kernel development in barley (Hordeum vulgare L.) (2003) Plant Cell Rep., 22, pp. 64-70
  • Jansen, R., Tollervey, D., Hurt, E.C., A U3 snoRNP protein with homology to splicing factor PRP4 and G beta domains is required for ribosomal RNA processing (1993) EMBO J., 12, pp. 2549-2558
  • Jeong, S., Clark, S.E., Photoperiod regulates flower meristem development in Arabidopsis thaliana (2005) Genetics, 169, pp. 907-915
  • Kellogg, E.A., Evolutionary history of the grasses (2001) Plant Physiol., 125, pp. 1198-1205
  • Kepinski, S., Leyser, O., The Arabidopsis F-box protein TIR1 is an auxin receptor (2005) Nature, 435, pp. 446-451
  • Kidner, C.A., Martienssen, R.A., The role of ARGONAUTE1 (AGO1) in meristem formation and identity (2005) Dev. Biol., 15, pp. 504-517
  • Kim, M., Ahn, J.-W., Jin, U.-H., Choi, D., Paek, K.-H., Pai, H.-S., Activation of the programmed cell death pathway by inhibition of proteasome function in plants (2003) J. Biol. Chem., 278, pp. 19406-19415
  • Kimura, S., Ueda, T., Hatanaka, M., Takenouchi, M., Hashimoto, J., Sakaguchi, K., Plant homologue of flap endonuclease-1: Molecular cloning, characterization, and evidence of expression in meristematic tissues (2000) Plant Mol. Biol., 42, pp. 415-427
  • Kirby, E.J.M., Ear development in spring wheat (1974) J. Agric. Sci., 82, pp. 437-447
  • Koning, A.J., Tanimoto, E.Y., Kiehne, K., Rost, T., Comai, L., Cell-specific expression of plant histone H2A genes (1991) Plant Cell, 3, pp. 657-665
  • Kosugi, S., Ohashi, Y., E2Ls, E2F-like repressors of Arabidopsis that bind to E2F sites in a monomeric form (2002) J. Biol. Chem., 277, pp. 16553-16558
  • Kyozuka, J., Kobayashi, T., Morita, M., Shimamoto, K., Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes (2000) Plant Cell Physiol., 41, pp. 710-718
  • Langer, R.H.M., Hanif, M., A study of floret development in wheat (Triticum aestivum L.) (1973) Ann. Bot., 37, pp. 743-751
  • Lee, S., Jeon, J.S., An, K., Moon, Y.H., Lee, S., Chung, Y.Y., An, G., Alteration of floral organ identity in rice through ectopic expression of OsMADS16 (2003) Planta, 217, pp. 904-911
  • Lee, H.C., Htoon, A.K., Paterson, J.L., Alkaline extraction of starch from Australian lentil cultivars Matilda and Digger optimised for starch yield and starch and protein quality (2007) Food. Chem., 102, pp. 551-559
  • Lolle, S.J., Hsu, W., Pruitt, R.E., Genetic analysis of organ fusion in Arabidopsis thaliana (1998) Genetics, 149, pp. 607-619
  • Lorenzo, O., Piqueras, R., Sánchez-Serrano, J.-J., Solano, R., ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense (2003) Plant Cell, 15, pp. 165-178
  • Lynn, K., Fernandez, A., Aida, M., Sedbrook, J., Tasaka, M., Masson, P., Barton, M.K., The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene (1999) Development, 126, pp. 469-481
  • Matsushita, M., Suzuki, N.N., Fujioka, Y., Ohsumi, Y., Inagaki, F., Expression, purification and crystallization of the Atg5-Atg16 complex essential for autophagy (2006) Acta Crystallographr. F, 62, pp. 1021-1023
  • Maucher, H., Hause, B., Feussner, I., Ziegler, J., Wasternack, C., Allene oxide synthases of barley (Hordeum vulgare cv. Salome): Tissue specific regulation in seedling development (2000) Plant J., 21, pp. 199-213
  • Mayfield, J.A., Fiebig, A., Johnstone, S.E., Preuss, D., Gene families from the Arabidopsis thaliana pollen coat proteome (2001) Science, 292, pp. 2482-2485
  • Van Mechelen, J.R., Schuurink, R.C., Smits, M., Graner, A., Douma, A.C., Sedee, N.J., Schmitt, N.F., Valk, B.E., Molecular characterization of two lipoxygenases from barley (1999) Plant Mol. Biol., 39, pp. 1283-1298
  • Miralles, D.J., Richards, R.A., Slafer, G.A., Duration of the stem elongation period influences the number of fertile florets in wheat and barley (2000) Aust. J. Plant Physiol., 27, pp. 931-940
  • Mishra, P., Mohapatra, P.K., Soluble carbohydrates and floret fertility in wheat in relation to population density stress (1987) Ann. Bot., 60, pp. 269-277
  • Muller, J., Wang, Y., Franzen, R., Santi, L., Salamini, F., Rohde, W., In vitro interactions between barley TALE homeodomain proteins suggest a role for protein-protein associations in the regulation of Knox gene function (2001) Plant J., 27, pp. 13-23
  • Muller, B.M., Saedler, H., Zachgo, S., The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development (2001) Plant J., 28, pp. 169-179
  • Naik, P.K., Mohapatra, P.K., Ethylene inhibitors promote male gametophyte survival in rice (1999) Plant Growth Regul., 28, pp. 29-39
  • Nemhauser, J.L., Mockler, T.C., Chory, J., Interdependency of brassinosteroid and auxin signaling in Arabidopsis (2004) PLoS Biol., 9, p. 258
  • Nilsson, L., Carlsbecker, A., Sundas-Larsson, A., Vahala, T., APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues (2007) Planta, 225, pp. 589-602
  • Nonomura, K.I., Nakano, M., Murata, K., Miyoshi, K., Eiguchi, M., Miyao, A., Hirochika, H., Kurata, N., An insertional mutation in the rice PAIR2 gene, the ortholog of ArabidopsisASY1, results in a defect in homologous chromosome pairing during meiosis (2004) Mol. Genet. Genomics, 271, pp. 121-129
  • Ohto, M.A., Fischer, R.L., Goldberg, R.B., Nakamura, K., Harada, J.J., Control of seed mass by APETALA2 (2005) Proc. Natl Acad. Sci. USA, 102, pp. 3123-3128
  • Okamuro, J.K., Den Boer, B.G.W., Lotys-Prass, C., Szeto, W., Jofuku, K.D., Flowers into shoots: Photo and hormonal control of a meristem identity switch in Arabidopsis (1996) Proc. Natl Acad. Sci. USA, 93, pp. 13831-13836
  • Orzaez, D., De Jong, A.J., Woltering, E.J., A tomato homologue of the human protein PIRIN is induced during programmed cell death (2001) Plant Mol. Biol., 46, pp. 459-468
  • Otsuga, D., Deguzman, B., Prigge, M.J., Drews, G.N., Clark, S.E., REVOLUTA regulates meristem initiation at lateral positions (2001) Plant J., 25, pp. 223-236
  • Owens, G.P., Hahn, W.E., Cohen, J.J., Identification of mRNAs associated with programmed cell death in immature thymocytes (1991) Mol. Cell. Biol., 11, pp. 4177-4188
  • Pal, S.K., Takimoto, K., Aizenman, E., Levitan, E.S., Apoptotic surface delivery of K+ channels (2006) Cell Death Differ., 13, pp. 661-667
  • Petiot, A., Pattingre, S., Arico, S., Meley, D., Codogno, P., Diversity of signaling controls of macroautophagy in mammalian cells (2002) Cell Struct. Funct., 27, pp. 431-441
  • Potuschak, T., Vansiri, A., Binder, B.M., Lechner, E., Vierstra, R.D., Genschik, P., The Exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis (2006) Plant Cell, 18, pp. 3047-3057
  • Price, J., Laxmi, A., St Martin, S.K., Jang, J.-C., Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis (2004) Plant Cell, 16, pp. 2128-2150
  • Prisco, M., Maiorana, A., Guerzoni, C., Calin, G., Calabretta, B., Voit, R., Grummt, I., Baserga, R., Role of pescadillo and upstream binding factor in the proliferation and differentiation of murine myeloid cells (2004) Mol. Cell. Biol., 24, pp. 5421-5433
  • Sato, T.K., Darsow, T., Emr, S.D., Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking (1998) Mol. Cell. Biol., 18, pp. 5308-5319
  • Sawers, R.J.H., Sheehan, M.J., Brutnell, T.P., Cereal phytochromes: Targets of selection, targets for manipulation? (2005) Trends Plant Sci., 10, pp. 138-143
  • Saxena, S.K., Kaur, S., Rab27a negatively regulates CFTR chloride channel function in colonic epithelia: Involvement of the effector proteins in the regulatory mechanism (2006) Biochem. Biophys. Res. Commun., 346, pp. 259-267
  • Shpak, E.D., Berthiaume, C.T., Hill, E.J., Torii, K.U., Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation (2004) Development, 131, pp. 1491-1501
  • Sláviková, S., Shy, G., Yao, Y., Glozman, R., Levanony, H., Pietrokovski, S., Elazar, Z., Galili, G., The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants (2005) J. Exp. Bot., 56, pp. 2839-2849
  • Souer, E., Van Houwelingen, A., Kloos, D., Mol, J., Koes, R., The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries (1996) Cell, 85, pp. 159-170
  • Sreenivasulu, N., Radchuk, V., Strickert, M., Miersch, O., Weschke, W., Wobus, U., Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA-regulated maturation in developing barley seeds (2006) Plant J., 47, pp. 310-327
  • Steffens, B., Sauter, M., Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid (2005) Plant Physiol., 139, pp. 713-721
  • Storey, J.D., Tibshirani, R., Statistical significance of genomewide studies (2003) Proc. Natl Acad. Sci. USA, 100, pp. 9440-9445
  • Syntichaki, P., Xu, K., Driscoll, M., Tavernarakis, N., Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans (2002) Nature, 419, pp. 939-994
  • Takumi, S., Kosugi, T., Murai, K., Mori, N., Nakamura, C., Molecular cloning of three homoeologous cDNAs encoding orthologs of the maize KNOTTED1 homeobox protein from young spikes of hexaploid wheat (2000) Gene, 249, pp. 171-181
  • Tanida, I., Sou, Y.S., Ezaki, J., Minematsu-Ikeguchi, N., Ueno, T., Kominami, E., HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptor-associated protein-phospholipid conjugates (2004) J. Biol. Chem., 279, pp. 36268-36276
  • Thompson, A.R., Doelling, J.H., Suttangkakul, A., Vierstra, R.D., Autophagic nutrient recycling in Arabidopsis directed by ATG8 and ATG12 conjugation pathways (2005) Plant Physiol., 138, pp. 2097-2110
  • Trudgill, D.L., Honek, A., Li, D., Van Straalen, N.M., Thermal time - Concepts and utility (2005) Ann. Appl. Biol., 146, pp. 1-14
  • Vaux, D.L., Hacker, G., Cloning of mouse RP-8 cDNA and its expression during apoptosis of lymphoid and myeloid cells (1995) DNA Cell Biol., 14, pp. 189-193
  • Waddington, S.R., Cartwright, P.M., Wall, P.C., A quantitative scale of spike initial and pistil development in barley and wheat (1983) Ann. Bot., 51, pp. 119-130
  • Wang, X., Feng, S., Nakayama, N., Crosby, W.L., Irish, V., Deng, X.-W., Wei, N., The COP9 signalosome interacts with SCFUFO and participates in Arabidopsis flower development (2003) Plant Cell, 15, pp. 1071-1082
  • Wilson, I.D., Barker, G.L.A., Beswick, R.W., A transcriptomics resource for wheat functional genomics (2004) Plant Biotechnol. J., 2, pp. 495-506
  • Xiong, Y., Contento, A.L., Bassham, D.C., AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana (2005) Plant J., 42, pp. 535-546
  • Yamagata, H., Uesugi, M., Saka, K., Iwasaki, T., Aizono, Y., Molecular cloning and characterization of a cDNA and a gene for subtilisin-like serine proteases from rice (Oryza sativa L.) and Arabidopsis thaliana (2000) Biosci. Biotechnol. Biochem., 64, pp. 1947-1957
  • Yamamoto, Y.Y., Matsui, M., Ang, L.-H., Deng, X.-W., Role of a COP1 interactive protein in mediating light-regulated gene expression in Arabidopsis (1998) Plant Cell, 10, pp. 1083-1094
  • Yang, M., Wardzala, E., Johal, G.S., Gray, J., The wound-inducible Lls1 gene from maize is an orthologue of the Arabidopsis Acd1 gene and the LLS1 protein is present in non-photosynthetic tissues (2004) Plant Mol. Biol., 54, pp. 175-191
  • Yemm, E.W., Willis, A.J., The estimation of carbohydrates in plant extracts by anthrone (1954) Biochem. J., 57, pp. 508-514
  • Yennawar, N.H., Li, L.-C., Dudzinski, D.M., Tabuchi, A., Cosgrove, D.J., Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize (2006) Proc. Natl Acad. Sci. USA, 103, pp. 14664-14671
  • Yip, W.-K., Jiao, X.-Z., Yang, S.F., Dependence of in vivo ethylene production rate on 1-aminocyclopropane-1- carboxylic acid content and oxygen concentrations (1988) Plant Physiol., 88, pp. 553-558
  • Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., Ohsumi, Y., Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy (2004) Plant Cell, 16, pp. 2967-2983
  • Young, T.E., Gallie, D.R., Demason, D.A., Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes (1997) Plant Physiol., 115, pp. 737-751
  • Zheng, H., Ji, C., Li, J., Jiang, H., Ren, M., Lu, Q., Gu, S., Xie, Y., Cloning and analysis of human Apg16L (2004) DNA Seq., 15, pp. 303-305. , Present address: CONICET, EEA INTA Pergamino, Ruta 32 km 4.5 (B2700WAA), Pergamino, Buenos Aires, Argentina

Citas:

---------- APA ----------
Ghiglione, H.O., Gonzalez, F.G., Serrago, R., Maldonado, S.B., Chilcott, C., Curá, J.A., Miralles, D.J.,..., Casal, J.J. (2008) . Autophagy regulated by day length determines the number of fertile florets in wheat. Plant Journal, 55(6), 1010-1024.
http://dx.doi.org/10.1111/j.1365-313X.2008.03570.x
---------- CHICAGO ----------
Ghiglione, H.O., Gonzalez, F.G., Serrago, R., Maldonado, S.B., Chilcott, C., Curá, J.A., et al. "Autophagy regulated by day length determines the number of fertile florets in wheat" . Plant Journal 55, no. 6 (2008) : 1010-1024.
http://dx.doi.org/10.1111/j.1365-313X.2008.03570.x
---------- MLA ----------
Ghiglione, H.O., Gonzalez, F.G., Serrago, R., Maldonado, S.B., Chilcott, C., Curá, J.A., et al. "Autophagy regulated by day length determines the number of fertile florets in wheat" . Plant Journal, vol. 55, no. 6, 2008, pp. 1010-1024.
http://dx.doi.org/10.1111/j.1365-313X.2008.03570.x
---------- VANCOUVER ----------
Ghiglione, H.O., Gonzalez, F.G., Serrago, R., Maldonado, S.B., Chilcott, C., Curá, J.A., et al. Autophagy regulated by day length determines the number of fertile florets in wheat. Plant J. 2008;55(6):1010-1024.
http://dx.doi.org/10.1111/j.1365-313X.2008.03570.x