Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The aim of this study was to analyze the effect of the application of dry and wet sucrose infusions, as pretreatments previous to air- and freeze-drying, on mechanical and physical properties of raspberries: water sorption, glass transition temperature (Tg), molecular mobility, texture and rehydration properties. Different dry and wet sugar infusions were prepared using combinations of additives: sodium bisulphite, citric acid, sodium bisulphite and citric acid, and no additives. These specific pretreatments are often used to obtain better sensorial characteristics of fruits upon further drying. After the dehydration step (air- or freeze-drying), all the samples were in the supercooled state. Pretreated samples presented lower Tg values and lower spin–spin relaxation times than control samples. Regarding texture, pretreated samples showed lower firmness than control samples. Also, freeze-dried pretreated samples showed higher firmness and lower deformability than air-dried pretreated ones. When considering the hygroscopicity, freeze-dried samples were more hygroscopic than air-dried ones. The fresh-like dried raspberries obtained could be directly consumed as snacks or incorporated in a composite food, such as a cereal mix. In this latter case, pretreated fruits would be more suitable, since their rehydration capacity at short times was relatively low. © 2016 Institution of Chemical Engineers

Registro:

Documento: Artículo
Título:Physical and mechanical properties of raspberries subjected to osmotic dehydration and further dehydration by air- and freeze-drying
Autor:Sette, P.; Salvatori, D.; Schebor, C.
Filiación:PROBIEN (CONICET – Universidad Nacional del Comahue), Buenos Aires 1400, Neuquén, 8300, Argentina
Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Members of CONICET, Argentina
Palabras clave:Air-drying; Freeze-drying; Glass transition; Mechanical properties; Molecular mobility; Osmotic dehydration; Raspberries; Water sorption properties; Citric acid; Drying; Fruits; Glass; Glass transition; Low temperature drying; Mechanical properties; Osmosis; Sodium; Air drying; Freeze drying; Molecular mobility; Osmotic dehydration; Raspberries; Water sorption; Dehydration
Año:2016
Volumen:100
Página de inicio:156
Página de fin:171
DOI: http://dx.doi.org/10.1016/j.fbp.2016.06.018
Título revista:Food and Bioproducts Processing
Título revista abreviado:Food Bioprod. Process.
ISSN:09603085
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09603085_v100_n_p156_Sette

Referencias:

  • Adiletta, G., Russo, P., Senadeera, W., Di Matteo, M., Drying characteristics and quality of grape under physical pretreatment (2015) J. Food Eng., 172
  • Agudelo-Laverde, L.M., Schebor, C., Buera, P., Proton mobility for the description of dynamic aspects of freeze-dried fruits (2014) J. Food Eng., 125, pp. 44-50
  • Agudelo-Laverde, M., Water–Solid Interactions and Their Consequences on Structural Aspects, Chromatic Attributes and Spatial Distribution of Light in Freeze-Dried Fruits (2012), (PhD thesis) University of Buenos Aires Argentine; Alzamora, S.M., Fito, P., López-Malo, A., Tapia, M.S., Efrén, P.A., Minimally processed fruits using vacuum impregnation, natural antimicrobial addition, and/or high pressure techniques (2000) Minimally Processed Fruits and Vegetables, pp. 293-315. , S.M. Alzamora M.S. Tapia A. López-Malo Aspen Publication Maryland
  • Alzamora, S.M., Salvatori, D.M., Minimal processing foods (2006) Food Technology and Food Engineering, pp. 118/1-118/118. , Taylor Francis CRC Press Boca Raton, USA
  • Association of Official Analytical Chemists (AOAC), Official Methods of Analysis (1990), 15th ed. Association of Official Analytical Chemists, Inc. Virginia; Arevalo-Pinedo, A., Giraldo-Zuniga, A.D., Dos Santos, F.L., Arevalo, D.S.Z., Arevalo, P.R., Sorption isotherms experimental data and mathematical models for murici pulp (Byrsonima sericea) (2004) Drying 2004. Proceedings 14th Drying Symposium (IDS 2004), pp. 634-639. , M. Silva S. Rocha Brazil Sao Paulo
  • Barbosa-Cánovas, G.V., Vega-Mercado, H., Food Dehydration (2000), Acribia ed. S.A. Zaragoza, Spain; Barrett, A.H., Rosenberg, S., Ross, E.W., Fracture intensity distributions during compression of puffed corn meal extrudates: method for quantifying fracturability (1994) J. Food Sci., 59 (3), pp. 617-620
  • Beaudry, C., Raghavan, G.S.V., Ratti, C., Rennie, T.J., Effect of four drying methods on the quality of osmotically dehydrated cranberries (2004) Dry. Technol., 22 (3), pp. 521-539
  • Bilbao-Sáinz, C., Andrés, A., Fito, P., Hydration kinetics of dried apple as affected by drying conditions (2005) J. Food Eng., 68 (3), pp. 369-376
  • Blessing, I., Ekwunife, O.A., Production and evaluation of the physico-chemical and sensory qualities of mixed fruit leather and cakes produced from apple (Musa pumila), banana (Musa sapientum), pineapple (Ananas comosus) (2015) Niger. Food J., 33, pp. 22-28
  • Chaunier, L., Courcoux, P., Valle, G.D., Lourdin, D., Physical and sensory evaluation of cornflakes crispness (2007) J. Texture Stud., 36, pp. 93-118
  • Ciurzynska, A., Lenart, A., Rehydration and sorption properties of osmotically pretreated freeze-dried strawberries (2010) J. Food Eng., 97, pp. 267-274
  • Contreras, C., Martín, M.E., Martínez-Navarrete, N., Chiralt, A., Effect of vacuum impregnation and microwave application on structural changes which occurred during air-drying of apple (2005) LWT – Food Sci. Technol., 38, pp. 471-477
  • De Michelis, A., Marquez, C., Mabellini, A., Ohaco, E., Giner, S., Effect of structural modifications on the drying kinetics of foods: changes in volume, surface area and product shape (2013) Int. J. Food Stud., 2, pp. 188-211
  • De Michelis, A., Pirone, B., Vullioud, M., Ochoa, M., Kesseler, A., Márquez, C., Cambios de volumen, área superficial y factor de forma de Heywood durante la deshidratación de cerezas (Prunus avium) (2008) Sci. Technol. Food, Campinas, 28 (2), pp. 317-321
  • De Santana, R.F., de Oliveira Neto, E.R., Santos, A.V., Soares, C.M.F., Lima, A.S., Cardoso, J.C., Water sorption isotherm and glass transition temperature of freeze-dried Syzygium cumini fruit (jambolan) (2014) J. Therm. Anal. Calorim.
  • Del Valle, J.M., Cuadros, T.R.M., Aguilera, J.M., Glass transitions and shrinkage during drying and storage of osmosed apple pieces (1998) Food Res. Int., 31 (3), pp. 191-204
  • Delgado, A., Rubiolo, A., Microstructural changes in strawberry after freezing and thawing processes (2005) LWT – Food Sci. Technol., 38, pp. 135-142
  • Demarchi, S.M., Quintero Ruiz, N.A., Concellón, A., Giner, S.A., Effect of temperature on hot-air drying rate and on retention of antioxidant capacity in apple leathers (2013) Food Bioprod. Process., 91, pp. 310-318
  • Dobraszczyk, B.J., Vincent, J.V., Measurement of mechanical properties of food materials in relation to texture: the materials approach (1999) Food Texture, pp. 99-151. , A.J. Rosenthal Aspen Gaithersburg
  • Donsi, G., Ferrari, G., Nigro, R., The effect of process conditions on the physical structure of dehydrated foods (1996) Food Bioprod. Process., 74 (C2), pp. 73-80
  • Duel, C.L., Plotto, A., Strawberries and raspberries (2004) Processing Fruits, Science and Technology, , D.M. Barrett L. Somogyi H. Ramaswamy CRC Press Boca Raton, FL, USA (Chapter 22)
  • Fabra, M.J., Talens, P., Moraga, G., Martinez-Navarrete, N., Sorption isotherm and state diagram of grapefruit as a tool to improve product processing and stability (2009) J. Food Eng., 93, pp. 52-58
  • Femenia, A., Simal, S., Taberner, C.G., Roselló, C., Effects of heat treatment and dehydration on pineapple (Ananas comosus L. Merrer) (2007) Int. J. Food Eng., 3 (2), pp. 1-14
  • Fullerton, G.D., Cameron, I.L., Relaxation of biological tissues (1988) Biomedical Magnetic Resonance Imaging, pp. 115-155. , F.W. Wehrli VCH New York
  • Giovanelli, G., Brambilla, A., Sinelli, N., Effects of osmo-air dehydration treatments on chemical, antioxidant and morphological characteristics of blueberries (2013) LWT – Food Sci. Technol., 54, pp. 577-584
  • Gómez Riera, P., Bruzone, I., Kirschbaum, D.S., Prospective View of Berries Until 2030 (2014), 1st ed. Science, Technology and Innovation Ministry. E-Book Buenos Aires ISBN 978-987-1632-38-1; Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) J. Res. Natl. Bureau Stand., Sect., A: Phys. Chem., 81, pp. 89-95
  • Guiné, R.P.F., Barroca, M.J., Effect of drying treatments on texture and color of vegetables (pumpkin and green pepper) (2012) Food Bioprod. Process., 90, pp. 58-63
  • Harker, F.R., Maindonald, J.H., Jackson, P.J., Penetrometer measurement of apple and kiwifruit firmness: operator and instrument differences (1996) J. Am. Soc. Hortic. Sci., 121 (5), pp. 927-936
  • Hills, B.P., Remigereau, B., NMR studies of changes in subcellular water compartamentation in parenchyma apple tissue during drying and freezing (1997) Int. J. Food Sci. Technol., 32, pp. 51-61
  • Janowicz, M., Lenart, A., Idzikowska, W., Sorption properties of osmotically dehydrated and freeze-dried strawberries (2007) Pol. J. Food Nutr. Sci., 57 (1), pp. 69-76
  • Jaworska, G., Bernas, E., Effects of pre-treatment, freezing and frozen storage on the texture of Boletus edulis (Bull: Fr.) mushrooms (2010) Int. J. Refrig., 33, pp. 877-885
  • Kalichevsky, M.T., Jaroskiewicz, E.M., Ablett, S., Blanshard, J.M., Lillford, P.J., The glass transition of amylopectin measured by DSC and NMR (1992) Carbohyd. Polym., 18, pp. 77-88
  • Khalloufi, S., Ratti, C., Quality deterioration of freeze-dried foods as explained by their glass transition temperature and internal structure (2003) J. Food Sci., 68, pp. 892-903
  • Khraisheh, M., McMinn, W., Magee, T., Quality and structural changes in starchy foods during microwave and convective drying (2004) Food Res. Int., 37, pp. 497-503
  • Koc, B., Eren, I., Kaymak Ertekin, F., Modelling bulk density, porosity and shrinkage of quince during drying: the effect of drying method (2008) J. Food Eng., 85, pp. 340-349
  • Krokida, M.K., Maroulis, Z.B., The effect of drying methods on viscoelastic behavior of dehydrated fruits and vegetables (2000) Int. J. Food Sci. Technol., 35, pp. 391-400
  • Krokida, M.K., Maroulis, Z.B., Marinos-Kouris, D., Effect of drying method on physical properties of dehydrated products (1998) Proceedings of the 11th International Dry, Symposium (IDS’98), Halkidiki, Greece
  • Kurozawa, L.E., Hubinger, M.D., Kil, J.P., Glass transition phenomenon on shrinkage of papaya during convective drying (2012) J. Food Eng., 108, pp. 43-50
  • Lazárides, H.N., Fito, P., Chiralt, A., Gekas, V., Lenart, A., Advances in osmotic dehydration (1999) Minimal Processing of Food and Process Optimization, pp. 175-200. , R.P. Singh F.A.R. Oliveira CRC Press Boca-Ratón
  • Lee, S.Y., Luna-Guzman, I., Chang, S., Barrett, D.M., Guinard, J.X., Relating descriptive analysis and instrumental texture data of processed diced tomatoes (1999) Food Qual. Prefer., 10, pp. 447-455
  • Levi, G., Karel, M., Volumetric shrinkage (collapse) in freeze-dried carbohydrates above their glass transition temperature (1995) Food Res. Int., 28, pp. 145-151
  • Lewicki, P.P., Effect of pre-drying treatment, drying and rehydration on plant tissue properties: a review (1998) Int. J. Food Prop., 1, pp. 1-22
  • Lewicki, P.P., Jakubczyk, E., Effect of hot air temperature on mechanical properties of dried apples (2004) J. Food Eng., 64 (3), pp. 307-314
  • Lewicki, P.P., Pawlak, G., Effect of drying on microstructure of plant tissue (2003) Dry. Technol., 21, pp. 657-683
  • Lipasek, R.A., Ortiz, J.C., Taylor, L.S., Mauer, L.J., Effects of anticaking agents and storage conditions on the moisture sorption, caking, and flowability of deliquescent ingredients (2012) Food Res. Int., 45 (1), pp. 369-380
  • Maldonado, S., Arnau, E., Bertuzzi, M.A., Effect of temperature and pretreatment on water diffusion during rehydration of dehydrated mangoes (2010) J. Food Eng., 96, pp. 333-341
  • Mandala, I.G., Anagnostaras, E.F., Oikonomou, C.K., Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics (2005) J. Food Eng., 69 (3), pp. 307-316
  • Marques, C.A., De Michelis, A., Comparison of drying kinetics for small fruits with and without particle shrinkage considerations (2008) Food Bioprocess Technol.
  • Maskan, E., Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying (2001) J. Food Eng., 48, pp. 177-182
  • Mauro, M.A., Dellarosa, N., Tylewicz, U., Tappi, S., Laghi, L., Rocculi, P., Dalla Rosa, M., Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions (2015) Food Chem.
  • Mayor, L., Sereno, A.M., Modelling shrinkage during convective drying of food materials: a review (2004) J. Food Eng., 61, pp. 373-386
  • Mazza, G., Dehydration of carrots – effects of predrying treatments on moisture transport and product quality (1983) J. Food Technol., 18, pp. 113-123
  • Moraga, G., Martinez-Navarrete, N., Chiralt, A., Water sorption isotherms and glass transition in strawberries: influence of pretreatment (2004) J. Food Eng., 62, pp. 315-321
  • Moraga, G., Martínez-Navarrete, N., Chiralt, A., Compositional changes of strawberry due to dehydration, cold storage and freezing thawing processes (2006) J. Food Process. Preserv., 30, pp. 458-474
  • Moreira, R., Chenlo, F., Chaguri, L., Fernandes, C., Water absorption, texture and color kinetics of air-dried chestnuts during rehydration (2008) J. Food Eng., 86, pp. 584-594
  • Mrad, N.D., Bonazzia, C., Courtoisa, F., Kechaouc, N., Mihoubid, N.B., Moisture desorption isotherms and glass transition temperatures of osmo-dehydrated apple and pear (2013) Food Bioprod. Process., 91, pp. 121-128
  • Nawirska, A., Figiel, A., Alicja, Z., Kucharska, A.Z., Anna Sokół-Łętowska, A., Biesiada, A., Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods (2009) J. Food Eng., 94, pp. 14-20
  • Nicoletti Telis, V.R., Sobral, P.J., Telis-Romero, J., Sorption isotherm, glass transitions and state diagram for freeze-dried plum skin and pulp (2006) Food Sci. Technol. Int., 12, pp. 181-187
  • Nieto, A., Salvatori, D., Castro, M.A., Alzamora, S.M., Air drying behaviour of apples as affected by blanching and glucose impregnation (1998) J. Food Eng., 36, pp. 63-79
  • Nieto, A.B., Vicente, S., Hodara, K., Castro, M.A., Alzamora, S.M., Osmotic dehydration of apple: influence of sugar and water activity on tissue structure, rheological properties and water mobility (2013) J. Food Eng., 119, pp. 104-114
  • Noshad, M., Mohebbi, M., Shahidi, F., Mortazavi, S.A., Effect of osmosis and ultrasound pretreatment on the moisture adsorption isotherms of quince (2012) Food Bioprod. Process., 90, pp. 266-274
  • Panyawong, S., Devahastin, S., Determination of deformation of a food product undergoing different drying methods and conditions via evolution of a shape factor (2007) J. Food Eng., 78 (1), pp. 151-161
  • Penner, E., Comparison of the New Vapor Sorption Analyzer to the Traditional Saturated Salt Slurry Method and the Dynamic Vapor Sorption Instrument (2013), (thesis for the degree of Master) Graduate College of the University of Illinois Urbana, USA; Prinzivalli, C., Brambilla, A., Ma, D., Lo Scalzo, R., Torreggiani, D., Effect of osmosis time on structure, texture and pectin composition of strawberry tissue (2006) Eur. Food Res. Technol., 224, pp. 119-127
  • Prothon, F., Ahrné, L.M., Funebo, T., Kidman, S., Langton, M., Sjokhölm, I., Effects of combined osmotic and microwave dehydration of apple on texture, microstructure and rehydration characteristics (2001) LWT – Food Sci. Technol., 34, pp. 95-101
  • Prothon, F., Ahrne, L., Sjoholm, I., Mechanisms and prevention of plant tissue collapse during dehydration: a critical review (2003) Crit. Rev. Food Sci. Nutr., 43 (4), pp. 447-479
  • Rastogi, N.K., Nguyen, L.T., Balasubramaniam, V.M., Effect of pretreatments on carrot texture after thermal and pressure-assisted thermal processing (2008) J. Food Eng., 88, pp. 541-547
  • Ratti, C., Hot air and freeze-drying of high value foods: a review (2001) J. Food Eng., 49, pp. 311-319
  • Rhim, J., Somi, K., Kim, J.M., Effect of freezing temperature on rehydration and water vapor adsorption characteristics of freeze-dried rice porridge (2011) J. Food Eng., 104, pp. 484-491
  • Roos, Y.H., Effect of moisture on the thermal behavior of strawberries studied using differential scanning calorimetry (1987) J. Food Sci., 52 (1), pp. 146-149
  • Roos, Y.H., Karel, M., Amorphous state and delayed ice formation in sucrose solutions (1991) Int. J. Food Sci. Technol., 26, pp. 553-566
  • Rosas-Mendoza, M.E., Fernández-Muñoz, J.L., Arjona-Román, J.L., Glass transition changes during osmotic dehydration (2011) Procedia Food Sci., 1, pp. 814-821
  • Roudaut, G., Dacremont, C., Vallès Pàmies, B., Colas, B., Le Meste, M., Crispness: a critical review on sensory and material science approaches (2002) Trends Food Sci. Technol., 13 (6-7), pp. 217-227
  • Ruan, R.R., Long, Z., Song, A., Chen, P.L., Determination of the glass transition temperature of food polymers using low field NMR (1998) LWT – Food Sci. Technol., 31, pp. 516-521
  • Sá, M.M., Figueiredo, A.M., Sereno, A.M., Glass transitions and state diagrams for fresh and processed apple (1999) Thermochim. Acta, 329, pp. 31-38
  • Sandoval, A.J., Chaunier, L., Courcoux, P., Della Valle, G., Bulk mechanical behavior of commercial particle food foams (2008) J. Texture Stud., 39, pp. 405-425
  • Sette, P., Franceschinis, L., Schebor, C., Salvatori, D., Osmotic dehydrated raspberries: changes in physical aspects and bioactive compounds (2015) Dry. Technol., 33, pp. 659-670
  • Sitkiewicz, I., Lenart, A., Lewicki, P.P., Mechanical properties of osmotic convection dried apples (1996) Pol. J. Food Nutr. Sci., 5-46 (4), p. 105
  • Sobral, P.J.A., Telis, V.R.N., Habitante, A.M.Q.B., Sereno, A., Phase diagram for freeze-dried persimmon (2001) Thermochim. Acta, 376, pp. 83-89
  • Sosa, N., Salvatori, D., Schebor, C., Physico-chemical and mechanical properties of apple disks subjected to osmotic dehydration and different drying methods (2012) Food Bioprocess. Technol., 5 (5), pp. 1790-1802
  • Sousa, M.B., Canet, W., Alvarez, M.D., Fernández, C., Effect of processing on the texture and sensory attributes of raspberry (cv. Heritage) and blackberry (cv. Thornfree) (2007) J. Food Eng., 78, pp. 9-21
  • Southgate, D., Determination of Food Carbohydrates (1976), Applied Science Publishers London; Talens, P., Pérez-Masía, R., Fabra, M.J., Vargas, M., Chiralt, A., Application of edible coatings to partially dehydrated pineapple for use in fruit–cereal products (2012) J. Food Eng., 112, pp. 86-93
  • Tapia de Daza, M.S., Alzamora, S.M., Welti-Chanes, J., Combination of preservation factors applied to minimal processing of foods (1996) Crit. Rev. Food Sci. Nutr., 36, pp. 629-659
  • Telis, V.R.N., Sobral, P.J.A., Glass transitions and state diagram for freeze-dried pineapple (2001) LWT – Food Sci. Technol., 34, pp. 199-205
  • Timmermann, E., Multilayer sorption parameters: BET or GAB values? (2003) Coll. Surf., 220, pp. 235-260
  • Torreggiani, D., Bertolo, G., Osmotic pretreatments in fruit processing: chemical, physical and structural effects (2001) J. Food Eng., 49, pp. 247-253
  • Udomkun, P., Argyropoulos, D., Nagle, M., Mahayothee, B., Müller, J., Sorption behaviour of papayas as affected by compositional and structural alterations from osmotic pretreatment and drying (2015) J. Food Eng., 157, pp. 14-23
  • Vásquez, C., Díaz-Calderón, P., Enrione, J., Matiacevich, S., State diagram, sorption isotherm and color of blueberries as a function of water content (2013) Thermochim. Acta, 570, pp. 8-15
  • Vega-Gálvez, A., López, J., Miranda, M., Di Scala, K., Yagnam, F., Uribe, E., Mathematical modelling of moisture sorption isotherms and determination of isosteric heat of blueberry variety O'Neil (2009) Int. J. Food Sci. Technol., 44, pp. 2033-2041
  • Vega-Gálvez, A., López, J., Ah-Hen, K., Torres, M.J., Lemus-Mondaca, R., Thermodynamic properties, sorption isotherms and glass transition temperature of cape gooseberry (Physalis peruviana L.) (2014) Food Technol. Biotechnol., 52 (1), pp. 83-92
  • Venir, E., Munari, M., Tonizzo, A., Maltini, E., Structure related changes during moistening of freeze dried apple tissue (2007) J. Food Eng., 81 (1), pp. 27-32
  • Venkatachalapathy, K., Raghavan, G.S.V., Microwave drying of osmotically dehydrated blueberries (1998) J. Microw. Power Electromagn. Energy, 33, pp. 95-102
  • Yu, X., Kappes, S.M., Bello-Perez, L.A., Schmidt, S.J., Investigating the moisture sorption behavior of amorphous sucrose using a dynamic humidity generating instrument (2008) J. Food Sci., 73 (1), pp. E25-E35

Citas:

---------- APA ----------
Sette, P., Salvatori, D. & Schebor, C. (2016) . Physical and mechanical properties of raspberries subjected to osmotic dehydration and further dehydration by air- and freeze-drying. Food and Bioproducts Processing, 100, 156-171.
http://dx.doi.org/10.1016/j.fbp.2016.06.018
---------- CHICAGO ----------
Sette, P., Salvatori, D., Schebor, C. "Physical and mechanical properties of raspberries subjected to osmotic dehydration and further dehydration by air- and freeze-drying" . Food and Bioproducts Processing 100 (2016) : 156-171.
http://dx.doi.org/10.1016/j.fbp.2016.06.018
---------- MLA ----------
Sette, P., Salvatori, D., Schebor, C. "Physical and mechanical properties of raspberries subjected to osmotic dehydration and further dehydration by air- and freeze-drying" . Food and Bioproducts Processing, vol. 100, 2016, pp. 156-171.
http://dx.doi.org/10.1016/j.fbp.2016.06.018
---------- VANCOUVER ----------
Sette, P., Salvatori, D., Schebor, C. Physical and mechanical properties of raspberries subjected to osmotic dehydration and further dehydration by air- and freeze-drying. Food Bioprod. Process. 2016;100:156-171.
http://dx.doi.org/10.1016/j.fbp.2016.06.018