Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Pyrolysis of acid pretreated peanut (Arachis hypogaea) shells was examined in order to improve the yield of liquids (bio-oils) and the characteristics of the three kinds of pyrolysis products. Also, pyrolysis of the pristine shells was comparatively investigated. The acid pretreatment was carried out employing a dilute HCl solution and it successfully diminished the ash content of the shells. Pyrolysis assays were performed in a fixed-bed reactor at different process temperatures (400 °C, 500 °C, and 600 °C). The maximum bio-oil yield was obtained at a temperature of 500 °C for both the pretreated and the pristine shells, but pyrolysis of the formers yielded more bio-oils than the untreated ones (42 wt% vs. 33 wt%). The increase of the process temperature resulted in a reduction of the solid (bio-char) generation for both samples. Demineralization also led to a further reduction of the bio-char yield. Regarding the products characteristics, neither the pretreatment nor the temperature had a noticeable influence on the elemental composition of the bio-oils. However, water content of the bio-oils was lower for the ones arising from pyrolysis of the demineralized shells although it increased with growing process temperature. Likewise, pyrolysis of the demineralized shells resulted in bio-chars with less ash, improving their potentialities as bio-fuels. Also, the bio-chars arising from the treated shells at the higher temperatures (500 °C and 600 °C) resulted in higher BET surface areas (up to 300 m2/g), pointing to their possible use as rough adsorbents or for further upgrading to activated carbons. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells
Autor:Gurevich Messina, L.I.; Bonelli, P.R.; Cukierman, A.L.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. de Industrias, Programa de Investigación y Desarrollo de Fuentes Alternativas de Materias Primas y Energía (PINMATE), Int. Güiraldes 2620, Ciudad Universitaria, Buenos Aires, C1428BGA, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, C1425FQB, Argentina
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Depto. de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica II, Junín 956, Buenos Aires, C1113AAD, Argentina
Palabras clave:Bio-char; Bio-oil; Demineralization; Peanut shells; Pyrolysis; Activated carbon; Biofuels; Oilseeds; Pyrolysis; Bio chars; Bio oil; Demineralization; Elemental compositions; Fixed bed reactor; Peanut shells; Process temperature; Pyrolysis products; Shells (structures); activated carbon; bioassay; biofuel; biomineralization; charcoal; comparative study; groundnut; hydrochloric acid; pyrolysis; shell; Arachis hypogaea
Año:2017
Volumen:114
Página de inicio:697
Página de fin:707
DOI: http://dx.doi.org/10.1016/j.renene.2017.07.065
Título revista:Renewable Energy
Título revista abreviado:Renew. Energy
ISSN:09601481
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09601481_v114_n_p697_GurevichMessina

Referencias:

  • Brosowski, A., Thrän, D., Mantau, U., Mahro, B., Erdmann, G., Adler, P., Stinner, W., Blanke, C., A review of biomass potential and current utilisation – status quo for 93 biogenic wastes and residues in Germany (2016) Biomass Bioenergy, 95, pp. 257-272
  • Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., Mekhilef, S., A review on biomass as a fuel for boilers (2011) Renew. Sustain. Energy Rev., 15, pp. 2262-2289
  • Kambo, H.S., Dutta, A., A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications (2015) Renew. Sustain. Energy Rev., 45, pp. 359-378
  • Álvarez, A., Pizarro, C., García, R., Bueno, J.L., Spanish biofuels heating value estimation based on structural analysis (2015) Ind. Crops Prod., 77, pp. 983-991
  • Louhichi, B., Belgaib, J., benamor, H., Hajji, N., Production of bio-ethanol from three varieties of dates (2013) Renew. Energy, 51, pp. 170-174
  • Iha, O.K., Alves, F.C.S.C., Suarez, P.A.Z., de Oliveira, M.B.F., Meneghetti, S.M.P., Santos, B.P.T., Soletti, J.I., Physicochemical properties of Syagrus coronata and Acrocomia aculeata oils for biofuel production (2014) Ind. Crops Prod., 62, pp. 318-322
  • Zhang, L., Xu, C., Champagne, P., Overview of recent advances in thermo-chemical conversion of biomass (2010) Energy Convers. Manag., 51, pp. 969-982
  • Tripathi, M., Sahu, J.N., Ganesan, P., Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review (2016) Renew. Sustain. Energy Rev., 55, pp. 467-481
  • Chiaramonti, D., Oasmaa, A., Solantausta, Y., Power generation using fast pyrolysis liquids from biomass (2007) Renew. Sustain. Energy Rev., 11, pp. 1056-1086
  • Lehto, J., Oasmaa, A., Solantausta, Y., Kytö, M., Chiaramonti, D., Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass (2014) Appl. Energy, 116, pp. 178-190
  • Di Blasi, C., Branca, C., D'Errico, G., Degradation characteristics of straw and washed straw (2000) Thermochim. Acta, 364, pp. 133-142
  • Das, P., Ganesh, A., Wangikar, P., Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products (2004) Biomass Bioenergy, 27, pp. 445-457
  • Fahmi, R., Bridgwater, A.V., Donnison, I., Yates, N., Jones, J.M., The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability (2008) Fuel, 87, pp. 1230-1240
  • Shi, L., Yu, S., Wang, F.-C., Wang, J., Pyrolytic characteristics of rice straw and its constituents catalyzed by internal alkali and alkali earth metals (2012) Fuel, 96, pp. 586-594
  • Stefanidis, S.D., Heracleous, E., Patiaka, D.T., Kalogiannis, K.G., Michailof, C.M., Lappas, A.A., Optimization of bio-oil yields by demineralization of low quality biomass (2015) Biomass Bioenergy, 83, pp. 105-115
  • Messina, L.G., Bonelli, P.R., Cukierman, A.L., Effect of mineral matter removal on pyrolysis of wood sawdust from an invasive species (2016) Energy Sources, Part A Recover. Util. Environ. Eff., 38, pp. 551-557
  • Oudenhoven, S.R.G., Westerhof, R.J.M., Aldenkamp, N., Brilman, D.W.F., Kersten, S.R.A., Demineralization of wood using wood-derived acid: towards a selective pyrolysis process for fuel and chemicals production (2013) J. Anal. Appl. Pyrolysis, 103, pp. 112-118
  • Liu, X., Bi, X.T., Removal of inorganic constituents from pine barks and switchgrass (2011) Fuel Process. Technol., 92, pp. 1273-1279
  • Liu, S., Pan, J., Ma, Y., Qiu, F., Niu, X., Zhang, T., Yang, L., Three-in-one strategy for selective adsorption and effective separation of cis-diol containing luteolin from peanut shell coarse extract using PU/GO/BA-MOF composite (2016) Chem. Eng. J., 306, pp. 655-666
  • Neves, D., Thunman, H., Matos, A., Tarelho, L., Gómez-Barea, A., Characterization and prediction of biomass pyrolysis products (2011) Prog. Energy Combust. Sci., 37, pp. 611-630
  • Akhtar, J., Saidina Amin, N., A review on operating parameters for optimum liquid oil yield in biomass pyrolysis (2012) Renew. Sustain. Energy Rev., 16, pp. 5101-5109
  • Van Soest, P.J., Robertson, J.B., Lewis, B.A., Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition (1991) J. Dairy Sci., 74, pp. 3583-3597
  • Rover, M.R., Johnston, P.A., Whitmer, L.E., Smith, R.G., Brown, R.C., The effect of pyrolysis temperature on recovery of bio-oil as distinctive stage fractions (2014) J. Anal. Appl. Pyrolysis, 105, pp. 262-268
  • De Celis, J., Amadeo, N.E., Cukierman, A.L., In situ modification of activated carbons developed from a native invasive wood on removal of trace toxic metals from wastewater (2009) J. Hazard. Mater., 161, pp. 217-223
  • Duan, F., Zhang, J.-P., Chyang, C.-S., Wang, Y.-J., Tso, J., Combustion of crushed and pelletized peanut shells in a pilot-scale fluidized-bed combustor with flue gas recirculation (2014) Fuel Process. Technol., 128, pp. 28-35
  • Mourant, D., Wang, Z., He, M., Wang, X.S., Garcia-Perez, M., Ling, K., Li, C.-Z., Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil (2011) Fuel, 90, pp. 2915-2922
  • Jiang, L., Hu, S., Sun, L., Su, S., Xu, K., He, L., Xiang, J., Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass (2013) Bioresour. Technol., 146, pp. 254-260
  • Sukumaran, S., Kong, S.C., Modeling fuel NOx formation from combustion of biomass-derived producer gas in a large-scale burner (2013) Combust. Flame, 160, pp. 2159-2168
  • Gonzalez, J.D., Kim, M.R., Buonomo, E.L., Bonelli, P.R., Cukierman, A.L., Pyrolysis of Biomass from Sustainable Energy Plantations: effect of mineral matter reduction on kinetics and charcoal pore structure (2008) Energy Sources, Part A Recover. Util. Environ. Eff., 30, pp. 809-817
  • Collard, F.-X., Blin, J., A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin (2014) Renew. Sustain. Energy Rev., 38, pp. 594-608
  • Kim, J.W., Lee, H.W., Lee, I.-G., Jeon, J.-K., Ryu, C., Park, S.H., Jung, S.-C., Park, Y.-K., Influence of reaction conditions on bio-oil production from pyrolysis of construction waste wood (2014) Renew. Energy, 65, pp. 41-48
  • Raveendran, K., Ganesh, A., Khilart, K.C., Influence of mineral matter pyrolysis characteristics on biomass (1995) Fuel, 74, pp. 1812-1822
  • Patwardhan, P.R., Satrio, J.A., Brown, R.C., Shanks, B.H., Product distribution from fast pyrolysis of glucose-based carbohydrates (2009) J. Anal. Appl. Pyrol., 86, pp. 323-330
  • Reichel, D., Klinger, M., Krzack, S., Meyer, B., Effect of ash components on devolatilization behavior of coal in comparison with biomass – product yields, composition, and heating values (2013) Fuel, 114, pp. 64-70
  • Kumagai, S., Matsuno, R., Grause, G., Kameda, T., Yoshioka, T., Enhancement of bio-oil production via pyrolysis of wood biomass by pretreatment with H2SO4 (2015) Bioresour. Technol., 178, pp. 76-82
  • Özçimen, D., Ersoy-Meriçboyu, A., Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials (2010) Renew. Energy, 35, pp. 1319-1324
  • Encinar, J.M., González, J.F., González, J., Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions (2000) Fuel Process. Technol., 68, pp. 209-222
  • Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., Characteristics of hemicellulose, cellulose and lignin pyrolysis (2007) Fuel, 86, pp. 1781-1788

Citas:

---------- APA ----------
Gurevich Messina, L.I., Bonelli, P.R. & Cukierman, A.L. (2017) . Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells. Renewable Energy, 114, 697-707.
http://dx.doi.org/10.1016/j.renene.2017.07.065
---------- CHICAGO ----------
Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L. "Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells" . Renewable Energy 114 (2017) : 697-707.
http://dx.doi.org/10.1016/j.renene.2017.07.065
---------- MLA ----------
Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L. "Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells" . Renewable Energy, vol. 114, 2017, pp. 697-707.
http://dx.doi.org/10.1016/j.renene.2017.07.065
---------- VANCOUVER ----------
Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L. Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells. Renew. Energy. 2017;114:697-707.
http://dx.doi.org/10.1016/j.renene.2017.07.065