Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Neurosteroids are the principal endogenous modulators of the γ-Aminobutyric acid receptors (GABAARs), pentameric membrane-bound proteins that can be assembled from at least 19 subunits. In the most abundant GABAAR arrangement (α1β2γ2), neurosteroids can potentiate the GABA action as well as produce a direct activation of the channel. The recent crystal structures of neurosteroids bound to α homopentameric GABAAR reveal binding to five equivalent sites. However, these results have been obtained using receptors that are not physiologically relevant, suggesting a need to investigate neurosteroid binding to heteropentameric receptors that exist in the central nervous system. In a previous work, we predicted the neurosteroid binding site by applying molecular modeling methods on the β3 homopentamer. Here we construct a homology model of the transmembrane domain of the heteropentameric α1β2γ2 receptor and then, by combining docking and molecular dynamics simulations, we analyzed neurosteroid binding. Results show that the five neurosteroid cavities are conserved in the α1β2γ2 receptor and all of them are able to bind neurosteroids. Two different binding modes were detected depending on the identity of the residue at position 241 in the transmembrane helix 1. These theoretical findings provide microscopic insights into neurosteroid binding at the heteropentameric GABAAR. The existence of two classes of sites may be associated with how neurosteroids modulate GABAAR. Our finding would represent the essential first step to reach a comprehensive understanding of how these endogenous molecules regulate the central nervous system. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:Structure and dynamics of neurosteroid binding to the α1β2γ2 GABAA receptor
Autor:Alvarez, L.D.; Pecci, A.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, UMYMFOR, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, IFIBYNE, Buenos Aires, Argentina
Palabras clave:Activation; Binding sites; Docking, molecular dynamics simulation; GABAA receptors; Neurosteroids; Potentiation; α1β2γ2 heteropentamer; 4 aminobutyric acid A receptor alpha1; 4 aminobutyric acid A receptor beta2; 4 aminobutyric acid A receptor gamma2; brexanolone; eltanolone; neurosteroid; Article; binding affinity; molecular docking; molecular dynamics; structural homology
Año:2018
Volumen:182
Página de inicio:72
Página de fin:80
DOI: http://dx.doi.org/10.1016/j.jsbmb.2018.04.012
Título revista:Journal of Steroid Biochemistry and Molecular Biology
Título revista abreviado:J. Steroid Biochem. Mol. Biol.
ISSN:09600760
CODEN:JSBBE
CAS:brexanolone, 516-54-1; eltanolone, 128-20-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09600760_v182_n_p72_Alvarez

Referencias:

  • Chebib, M., Johnston, G.A., The ‘ABC’ of GABA receptors: a brief review (1999) Clin. Exp. Pharmacol. Physiol., 26, pp. 937-940
  • Gasior, M., Carter, R.B., Witkin, J.M., Neuroactive steroids: potential therapeutic use in neurological and psychiatric disorders (1999) Trends Pharmacol. Sci., 20, pp. 107-112
  • Belelli, D., Lambert, J.J., Neurosteroids: endogenous regulators of the GABA(a) receptor (2005) Nat. Rev. Neurosci., 6, pp. 565-575
  • Reddy, D.S., Rogawski, M.A., Neurosteroids - endogenous regulators of seizure susceptibility and role in the treatment of epilepsy (2012) Jasper's Basic Mechanisms of the Epilepsies, Bethesda (MD), , J.L. Noebels M. Avoli M.A. Rogawski R.W. Olsen A.V. Delgado-Escueta
  • Sigel, E., Steinmann, M.E., Structure, function, and modulation of GABA(a) receptors (2012) J. Biol. Chem., 287, pp. 40224-40231
  • daCosta, C.J., Baenziger, J.E., Gating of pentameric ligand-gated ion channels: structural insights and ambiguities (2013) Structure, 21, pp. 1271-1283
  • Puthenkalam, R., Hieckel, M., Simeone, X., Suwattanasophon, C., Feldbauer, R.V., Ecker, G.F., Ernst, M., Structural studies of GABAA receptor binding sites: which experimental structure tells us what? (2016) Front. Mol. Neurosci., 9, p. 44
  • Enna, J., Möhler, H., The GABA Receptors (2007), 3rd edition Humana Press Inc; Chen, Z.W., Manion, B., Townsend, R.R., Reichert, D.E., Covey, D.F., Steinbach, J.H., Sieghart, W., Evers, A.S., Neurosteroid analog photolabeling of a site in the third transmembrane domain of the beta3 subunit of the GABA(a) receptor (2012) Mol. Pharmacol., 82, pp. 408-419
  • Hosie, A.M., Wilkins, M.E., da Silva, H.M., Smart, T.G., Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites (2006) Nature, 444, pp. 486-489
  • Hosie, A.M., Wilkins, M.E., Smart, T.G., Neurosteroid binding sites on GABA(a) receptors (2007) Pharmacol. Ther., 116, pp. 7-19
  • Alvarez, L.D., Estrin, D.A., Exploring the molecular basis of neurosteroid binding to the beta3 homopentameric GABAA receptor (2015) J. Steroid Biochem. Mol. Biol., 154, pp. 159-167
  • Miller, P.S., Aricescu, A.R., Crystal structure of a human GABAA receptor (2014) Nature, 512, pp. 270-275
  • Laverty, D., Thomas, P., Field, M., Andersen, O.J., Gold, M.G., Biggin, P.C., Gielen, M., Smart, T.G., Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites (2017) Nat. Struct. Mol. Biol., 24, pp. 977-985
  • Miller, P.S., Scott, S., Masiulis, S., De Colibus, L., Pardon, E., Steyaert, J., Aricescu, A.R., Structural basis for GABAA receptor potentiation by neurosteroids (2017) Nat. Struct. Mol. Biol., 24, pp. 986-992
  • Sali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J. Mol. Biol., 234, pp. 779-815
  • Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility (2009) J. Comput. Chem., 30, pp. 2785-2791
  • Miller, B.R., 3rd, McGee, T.D., Jr, Swails, J.M., Homeyer, N., Gohlke, H., Roitberg, A.E., MMPBSA.py: an efficient program for end-state Free energy calculations (2012) J. Chem. Theory Comput., 8, pp. 3314-3321
  • Bracamontes, J.R., Li, P., Akk, G., Steinbach, J.H., A neurosteroid potentiation site can be moved among GABAA receptor subunits (2012) J. Physiol., 590, pp. 5739-5747
  • Davies, P.A., Kirkness, E.F., Hales, T.G., Modulation by general anaesthetics of rat GABAA receptors comprised of alpha 1 beta 3 and beta 3 subunits expressed in human embryonic kidney 293 cells (1997) Br. J. Pharmacol., 120, pp. 899-909
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Pople, J.A., Gaussian 03 (2004), Revision C.02, Gaussian, Inc. Wallingford CT; Case, D.A., Babin, V., Berryman, J.T., Betz, R.M., Cai, Q., Cerutti, D.S., Cheatham, T.E., III, Kollman, P.A., AMBER 14 (2014), University of California San Francisco; Wu, E.L., Cheng, X., Jo, S., Rui, H., Song, K.C., Davila-Contreras, E.M., Qi, Y., Im, W., CHARMM-GUI membrane builder toward realistic biological membrane simulations (2014) J. Comput. Chem., 35, pp. 1997-2004
  • Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., Simmerling, C., ff14SB: improving the accuracy of protein Side Chain and backbone parameters from ff99SB (2015) J. Chem. Theory Comput., 11, pp. 3696-3713
  • Dickson, C.J., Madej, B.D., Skjevik, A.A., Betz, R.M., Teigen, K., Gould, I.R., Walker, R.C., lipid14: the Amber lipid force Field (2014) J. Chem. Theory Comput., 10, pp. 865-879
  • Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., Development and testing of a general amber force field (2004) J. Comput. Chem., 25, pp. 1157-1174
  • Schmidtke, P., Le Guilloux, V., Maupetit, J., Tuffery, P., fpocket: online tools for protein ensemble pocket detection and tracking (2010) Nucleic Acids Res., 38, pp. W582-589
  • Roe, D.R., Cheatham, T.E., 3rd, PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data (2013) J. Chem. Theory Comput., 9, pp. 3084-3095
  • Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14 (33-38), pp. 27-38

Citas:

---------- APA ----------
Alvarez, L.D. & Pecci, A. (2018) . Structure and dynamics of neurosteroid binding to the α1β2γ2 GABAA receptor. Journal of Steroid Biochemistry and Molecular Biology, 182, 72-80.
http://dx.doi.org/10.1016/j.jsbmb.2018.04.012
---------- CHICAGO ----------
Alvarez, L.D., Pecci, A. "Structure and dynamics of neurosteroid binding to the α1β2γ2 GABAA receptor" . Journal of Steroid Biochemistry and Molecular Biology 182 (2018) : 72-80.
http://dx.doi.org/10.1016/j.jsbmb.2018.04.012
---------- MLA ----------
Alvarez, L.D., Pecci, A. "Structure and dynamics of neurosteroid binding to the α1β2γ2 GABAA receptor" . Journal of Steroid Biochemistry and Molecular Biology, vol. 182, 2018, pp. 72-80.
http://dx.doi.org/10.1016/j.jsbmb.2018.04.012
---------- VANCOUVER ----------
Alvarez, L.D., Pecci, A. Structure and dynamics of neurosteroid binding to the α1β2γ2 GABAA receptor. J. Steroid Biochem. Mol. Biol. 2018;182:72-80.
http://dx.doi.org/10.1016/j.jsbmb.2018.04.012