Artículo

Scotti, L.; Abramovich, D.; Pascuali, N.; Irusta, G.; Meresman, G.; Tesone, M.; Parborell, F. "Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome" (2014) Journal of Steroid Biochemistry and Molecular Biology. 144(PART B):392-401
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The relationship between human chorionic gonadotropin and ovarian hyperstimulation syndrome (OHSS) is partially mediated by vascular endothelial growth factor A (VEGF). The aim of this study was to investigate the effects of VEGF inhibition on the development of corpora lutea (CL) and cystic structures, steroidogenesis, apoptosis, cell proliferation, endothelial cell area, VEGF receptors (KDR and Flt-1), claudin-5 and occludin levels in ovaries from an OHSS rat model. The VEGF inhibitor used (VEGF receptor-1 (FLT-1)/Fc chimera, TRAP) decreased the concentrations of progesterone and estradiol as well as the percentage of CL and cystic structures in OHSS rats, and increased apoptosis in CL. Endothelial cell area in CL and KDR expression and its phosphorylation were increased, whereas claudin-5 and occludin levels were decreased in the OHSS compared to the control TRAP reversed these parameters. Our findings indicate that VEGF inhibition prevents the early onset of OHSS and decreases its severity in rats. © 2014 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome
Autor:Scotti, L.; Abramovich, D.; Pascuali, N.; Irusta, G.; Meresman, G.; Tesone, M.; Parborell, F.
Filiación:Instituto de Biología y Medicina Experimental (IByME), CONICET, Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Angiogenesis; Apoptosis; Cell proliferation; OHSS; Ovary; VEGF; aflibercept; angiogenesis inhibitor; claudin 5; Cldn5 protein, rat; estradiol; Flt1 protein, rat; hybrid protein; occludin; Ocln protein, rat; progesterone; vascular endothelial growth factor A, rat; vasculotropin A; vasculotropin receptor; vasculotropin receptor 1; vasculotropin receptor 2; claudin 5; estradiol; occludin; progesterone; unclassified drug; vascular endothelial growth factor receptor 1 fc chimera; vasculotropin; vasculotropin inhibitor; vasculotropin receptor 1; vasculotropin receptor 2; animal; antagonists and inhibitors; apoptosis; blood; cell proliferation; drug effects; endothelium cell; female; metabolism; ovary; ovary hyperstimulation; pathology; Sprague Dawley rat; animal experiment; animal model; animal tissue; Article; controlled study; corpus luteum; estradiol blood level; nonhuman; ovary hyperstimulation; progesterone blood level; protein expression; protein phosphorylation; rat; steroidogenesis; Angiogenesis Inhibitors; Animals; Apoptosis; Cell Proliferation; Claudin-5; Endothelial Cells; Estradiol; Female; Occludin; Ovarian Hyperstimulation Syndrome; Ovary; Progesterone; Rats, Sprague-Dawley; Receptors, Vascular Endothelial Growth Factor; Recombinant Fusion Proteins; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-1; Vascular Endothelial Growth Factor Receptor-2
Año:2014
Volumen:144
Número:PART B
Página de inicio:392
Página de fin:401
DOI: http://dx.doi.org/10.1016/j.jsbmb.2014.08.013
Título revista:Journal of Steroid Biochemistry and Molecular Biology
Título revista abreviado:J. Steroid Biochem. Mol. Biol.
ISSN:09600760
CODEN:JSBBE
CAS:aflibercept, 845771-78-0, 862111-32-8; estradiol, 50-28-2; occludin, 176304-61-3; progesterone, 57-83-0; vasculotropin A, 489395-96-2; vasculotropin receptor, 301253-48-5; vasculotropin, 127464-60-2; aflibercept; Angiogenesis Inhibitors; Claudin-5; Cldn5 protein, rat; Estradiol; Flt1 protein, rat; Occludin; Ocln protein, rat; Progesterone; Receptors, Vascular Endothelial Growth Factor; Recombinant Fusion Proteins; Vascular Endothelial Growth Factor A; vascular endothelial growth factor A, rat; Vascular Endothelial Growth Factor Receptor-1; Vascular Endothelial Growth Factor Receptor-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09600760_v144_nPARTB_p392_Scotti

Referencias:

  • Delvinge, A., Rozenberg, S., Epidemiology and prevention of ovarian hyperstimulation syndrome (OHSS): A review (2002) Human Reproduction Update, 8 (6), pp. 559-577. , DOI 10.1093/humupd/8.6.559
  • Aboulghar, M.A., Mansour, R.T., Ovarian hyperstimulation syndrome: Classifications and critical analysis of preventive measures (2003) Human Reproduction Update, 9 (3), pp. 275-289. , DOI 10.1093/humupd/dmg018
  • Rizk, B., Aboulghar, M., Modern management of ovarian hyperstimulation syndrome (1991) Hum. Reprod., 6, pp. 1082-1087
  • Fiedler, K., Ezcurra, D., Predicting and preventing ovarian hyperstimulation syndrome (OHSS): The need for individualized not standardized treatment (2012) Reprod. Biol. Endocrinol., 10, p. 32
  • Golan, A., Ron-El, R., Herman, A., Soffer, Y., Weinraub, Z., Caspi, E., Ovarian hyperstimulation syndrome: An updata review (1989) Obstetrical and Gynecological Survey, 44 (6), pp. 430-440
  • Gomez, R., Soares, S.R., Busso, C., Garcia-Velasco, J.A., Simon, C., Pellicer, A., Physiology and pathology of ovarian hyperstimulation syndrome (2010) Semin. Reprod. Med., 28, pp. 448-457
  • Nastri, C.O., Ferriani, R.A., Rocha, I.A., Martins, W.P., Ovarian hyperstimulation syndrome: Pathophysiology and prevention (2010) J. Assist. Reprod. Genet., 27, pp. 121-128
  • Senger, D.R., Galli, S.J., Dvorak, A.M., Perruzzi, C.A., Harvey, V.S., Dvorak, H.F., Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid (1983) Science, 219, pp. 983-985
  • Shalaby, F., Rossant, J., Yamaguchi, T.P., Gertsenstein, M., Wu, X.F., Breitman, M.L., Schuh, A.C., Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice (1995) Nature, 376, pp. 62-66
  • Verheul, H.M.W., Hoekman, K., Jorna, A.S., Smit, E.F., Pinedo, H.M., Targeting vascular endothelial growth factor blockade: Ascites and pleural effusion formation (2000) Oncologist, 5 (SUPPL. 1), pp. 45-50
  • Abramovich, D., Rodriguez, C.A., Hernandez, F., Tesone, M., Parborell, F., Spatiotemporal analysis of the protein expression of angiogenic factors and their related receptors during folliculogenesis in rats with and without hormonal treatment (2009) Reproduction, 137, pp. 309-320
  • Endo, T., Kitajima, Y., Nishikawa, A., Manase, K., Shibuya, M., Kudo, R., Cyclic changes in expression of mRNA of vascular endothelial growth factor, its receptors Flt-1 and KDR/Flk-1, and Ets-1 in human corpora lutea (2001) Fertility and Sterility, 76 (4), pp. 762-768. , DOI 10.1016/S0015-0282(01)02012-X, PII S001502820102012X
  • Phillips, H.S., Hains, J., Leung, D.W., Ferrara, N., Vascular endothelial growth factor is expressed in rat corpus luteum (1990) Endocrinology, 127 (2), pp. 965-967
  • Hazzard, T.M., Nayak, N.R., Brenner, R.M., Stouffer, R.L., Dynamic expression of receptors for vascular endothelial growth factor (VEGFR1, VEGFR2) and angiopioetins (TIE-2) in the primate corpus luteum (CL) during the menstrual cycle (2000) Biol. Reprod., 62, p. 271
  • Yamamoto, S., Konishi, I., Mandai, M., Kuroda, H., Komatsu, T., Nanbu, K., Sakahara, H., Mori, T., Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: Correlation with clinicopathology and patient survival, and analysis of serum VEGF levels (1997) British Journal of Cancer, 76 (9), pp. 1221-1227
  • Yan, Z., Weich, H.A., Bernart, W., Breckwoldt, M., Neulen, J., Vascular endothelial growth factor (VEGF) messenger ribonucleic acid (mRNA) expression in luteinized human granulosa cells in vitro (1993) Journal of Clinical Endocrinology and Metabolism, 77 (6), pp. 1723-1725. , DOI 10.1210/jc.77.6.1723
  • Neulen, J., Yan, Z., Raczek, S., Weindel, K., Keck, C., Weich, H.A., Marme, D., Breckwoldt, M., Human chorionic gonadotropin-dependent expression of vascular endothelial growth factor/vascular permeability factor in human granulosa cells: Importance in ovarian hyperstimulation syndrome (1995) J. Clin. Endocrinol. Metab., 80, pp. 1967-1971
  • Albert, C., Garrido, N., Mercader, A., Rao, C.V., Remohi, J., Simon, C., Pellicer, A., The role of endothelial cells in the pathogenesis of ovarian hyperstimulation syndrome (2002) Molecular Human Reproduction, 8 (5), pp. 409-418
  • Groten, T., Fraser, H.M., Duncan, W.C., Konrad, R., Kreienberg, R., Wulff, C., Cell junctional proteins in the human corpus luteum: Changes during the normal cycle and after HCG treatment (2006) Human Reproduction, 21 (12), pp. 3096-3102. , DOI 10.1093/humrep/del286
  • Rodewald, M., Herr, D., Fraser, H.M., Hack, G., Kreienberg, R., Wulff, C., Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor (2007) Molecular Human Reproduction, 13 (11), pp. 781-789. , DOI 10.1093/molehr/gam066
  • Dejana, E., Endothelial cell-cell junctions: Happy together (2004) Nature Reviews Molecular Cell Biology, 5 (4), pp. 261-270. , DOI 10.1038/nrm1357
  • Schneeberger, E.E., Lynch, R.D., The tight junction: A multifunctional complex (2004) Am. J. Physiol. Cell Physiol., 286, pp. 1213-C1228
  • Rodewald, M., Herr, D., Duncan, W.C., Fraser, H.M., Hack, G., Konrad, R., Gagsteiger, F., Wulff, C., Molecular mechanisms of ovarian hyperstimulation syndrome: Paracrine reduction of endothelial claudin 5 by hCG in vitro is associated with increased endothelial permeability (2009) Hum. Reprod., 24, pp. 1191-1199
  • Lampugnani, M.G., Endothelial cell-to-cell junctions: Adhesion and signaling in physiology and pathology (2012) Cold Spring Harb. Perspect. Med., 2. , 10.1101/cshperspect.a006528
  • Bazzoni, G., Dejana, E., Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis (2004) Physiological Reviews, 84 (3), pp. 869-901. , DOI 10.1152/physrev.00035.2003
  • Dejana, E., Tournier-Lasserve, E., Weinstein, B.M., The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications (2009) Dev. Cell, 16, pp. 209-221
  • Pedram, A., Razandi, M., Levin, E.R., Deciphering vascular endothelial cell growth factor/vascular permeability factor signaling to vascular permeability inhibition by atrial natriuretic peptide (2002) Journal of Biological Chemistry, 277 (46), pp. 44385-44398. , DOI 10.1074/jbc.M202391200
  • Krasnow, J.S., Zeleznik, A.J., Berga, S.L., Yeo, K.-T., Guzick, D.S., Vascular permeability factor and vascular endothelial growth factor in ovarian hyperstimulation syndrome: A preliminary report (1996) Fertility and Sterility, 65 (3), pp. 552-555
  • Geva, E., Jaffe, R.B., Role of vascular endothelial growth factor in ovarian physiology and pathology (2000) Fertil. Steril., 74, pp. 429-438
  • Lee, A., Burry, K.A., Christenson, L.K., Patton, P.E., Stouffer, R.L., Vascular endothelial growth factor levels in serum and follicular fluid of patients undergoing in vitro fertilization (1997) Fertility and Sterility, 68 (2), pp. 305-311. , DOI 10.1016/S0015-0282(97)81520-8, PII S0015028297002057
  • Abramovich, D., Parborell, F., Tesone, M., Effect of a vascular endothelial growth factor (VEGF) inhibitory treatment on the folliculogenesis and ovarian apoptosis in gonadotropin-treated prepubertal rats (2006) Biology of Reproduction, 75 (3), pp. 434-441. , DOI 10.1095/biolreprod.106.051052
  • Parborell, F., Abramovich, D., Tesone, M., Intrabursal administration of the antiangiopoietin 1 antibody produces a delay in rat follicular development associated with an increase in ovarian apoptosis mediated by changes in the expression of BCL2 related genes (2008) Biology of Reproduction, 78 (3), pp. 506-513. , http://www.biolreprod.org/cgi/reprint/78/3/506?ck=nck, DOI 10.1095/biolreprod.107.063610
  • Kitajima, Y., Endo, T., Manase, K., Nishikawa, A., Shibuya, M., Kudo, R., Gonadotropin-releasing hormone agonist administration reduced vascular endothelial growth factor (VEGF), VEGF receptors, and vascular permeability of the ovaries of hyperstimulated rats (2004) Fertility and Sterility, 81 (SUPPL. 1), pp. 842-849. , DOI 10.1016/j.fertnstert.2003.11.012, PII S0015028203030607
  • Kitajima, Y., Endo, T., Nagasawa, K., Manase, K., Honnma, H., Baba, T., Hayashi, T., Saito, T., Hyperstimulation and a gonadotropin-releasing hormone agonist modulate ovarian vascular permeability by altering expression of the tight junction protein claudin-5 (2006) Endocrinology, 147 (2), pp. 694-699. , http://endo.endojournals.org/cgi/reprint/147/2/694, DOI 10.1210/en.2005-0700
  • Irusta, G., Parborell, F., Peluffo, M., Manna, P.R., Gonzalez-Calvar, S.I., Calandra, R., Stocco, D.M., Tesone, M., Steroidogenic acute regulatory protein in ovarian follicles of gonadotropin-stimulated rats is regulated by a gonadotropin-releasing hormone agonist (2003) Biology of Reproduction, 68 (5), pp. 1577-1583. , DOI 10.1095/biolreprod.102.009944
  • Irusta, G., Parborell, F., Tesone, M., Inhibition of cytochrome P-450C17 enzyme by a GnRH agonist in ovarian follicles from gonadotropin-stimulated rats (2007) Am. J. Physiol. Endocrinol. Metab., 292, pp. 1456-E1464
  • Woodruff, T.K., D'Agostino, J., Schwartz, N.B., Mayo, K.E., Dynamic changes in inhibin messenger RNAs in rat ovarian follicles during the reproductive cycle (1988) Science, 239, pp. 1296-1299
  • Andreu, C., Parborell, F., Vanzulli, S., Chemes, H., Tesone, M., Regulation of follicular luteinization by a gonadotropin-releasing hormone agonist: Relationship between steroidogenesis and apoptosis (1998) Molecular Reproduction and Development, 51 (3), pp. 287-294. , DOI 10.1002/(SICI)1098-2795(1998 11)51:3<287::AI D-MRD8>3.0.CO;2-L
  • Sadrkhanloo, R., Hofeditz, C., Erickson, G.F., Evidence for widespread atresia in the hypophysectomized estrogen-treated rat (1987) Endocrinology, 120 (1), pp. 146-155
  • Augustin, H.G., Braun, K., Telemenakis, I., Modlich, U., Kuhn, W., Ovarian angiogenesis. Phenotypic characterization of endothelial cells in a physiological model of blood vessel growth and regression (1995) Am. J. Pathol., 147, pp. 339-351
  • Redmer, D.A., Doraiswamy, V., Bortnem, B.J., Fisher, K., Jablonka-Shariff, A., Grazul-Bilska, A.T., Reynolds, L.P., Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum (2001) Biology of Reproduction, 65 (3), pp. 879-889
  • Cherry, J.A., Hou, X., Rueda, B.R., Davis, J.S., Townson, D.H., Microvascular endothelial cells of the bovine corpus luteum: A comparative examination of the estrous cycle and pregnancy (2008) Journal of Reproduction and Development, 54 (3), pp. 183-191. , http://www.jstage.jst.go.jp/article/jrd/54/3/183/_pdf, DOI 10.1262/jrd.19182
  • Abramovich, D., Irusta, G., Parborell, F., Tesone, M., Intrabursal injection of vascular endothelial growth factor trap in eCG-treated prepubertal rats inhibits proliferation and increases apoptosis of follicular cells involving the PI3K/AKT signaling pathway (2010) Fertil. Steril., 93, pp. 1369-1377
  • Levin, E.R., Rosen, G.F., Cassidenti, D.L., Yee, B., Meldrum, D., Wisot, A., Pedram, A., Role of vascular endothelial cell growth factor in ovarian hyperstimulation syndrome (1998) Journal of Clinical Investigation, 102 (11), pp. 1978-1985
  • Gomez, R., Simon, C., Remohi, J., Pellicer, A., Vascular endothelial growth factor receptor-2 activation induces vascular permeability in hyperstimulated rats, and this effect is prevented by receptor blockade (2002) Endocrinology, 143 (11), pp. 4339-4348. , DOI 10.1210/en.2002-220204
  • Ozcakir, H.T., Giray, S.G., Ozbilgin, M.K., Uyar, Y., Lacin, S., Caglar, H., Immunohistochemical detection of transforming growth factor-α, epidermal growth factor, and vascular endothelial growth factor expression in hyperstimulated rat ovary (2005) Acta Obstetricia et Gynecologica Scandinavica, 84 (9), pp. 887-893. , DOI 10.1111/j.0001-6349.2005.00586.x
  • Scotti, L., Irusta, G., Abramovich, D., Tesone, M., Parborell, F., Administration of a gonadotropin-releasing hormone agonist affects corpus luteum vascular stability and development and induces luteal apoptosis in a rat model of ovarian hyperstimulation syndrome (2011) Mol. Cell Endocrinol., 335, pp. 116-125
  • Gharbiya, L., Iannetti, F., De Vico, U., Mungo, M.L., Marenco, M., Visual and anatomical outcomes of intravitreal aflibercept for treatment-resistant neovascular age-related macular degeneration (2014) Biomed. Res. Int., 2014. , 273754
  • Chang, A.A., Li, H., Broadhead, G.K., Hong, T., Schlub, T.E., Wijeyakumar, W., Zhu, M., Intravitreal aflibercept for treatment-resistant neovascular age-related macular degeneration (2014) Ophthalmology, 121, pp. 188-192
  • Navot, D., Bergh, P.A., Laufer, N., Ovarian hyperstimulation syndrome in novel reproductive technologies: Prevention and treatment (1992) Fertil. Steril., 58, pp. 249-261
  • Stocco, C., Telleria, C., Gibori, G., The molecular control of corpus luteum formation, function, and regression (2007) Endocrine Reviews, 28 (1), pp. 117-149. , http://edrv.endojournals.org/cgi/reprint/28/1/117, DOI 10.1210/er.2006-0022
  • Rizk, B., Aboulghar, M., Smitz, J., Ron-El, R., The role of vascular endothelial growth factor and interleukins in the pathogenesis of severe ovarian hyperstimulation syndrome (1997) Human Reproduction Update, 3 (3), pp. 255-266. , DOI 10.1093/humupd/3.3.255
  • Reynolds, L.P., Grazul-Bilska, A.T., Redmer, D.A., Angiogenesis in the corpus luteum (2000) Endocrine, 12 (1), pp. 1-9
  • Fraser, H.M., Wilson, H., Wulff, C., Rudge, J.S., Wiegand, S.J., Administration of vascular endothelial growth factor Trap during the 'post-angiogenic' period of the luteal causes rapid functional luteolysis and selective endothelial cell death in the marmoset (2006) Reproduction, 132 (4), pp. 589-600. , DOI 10.1530/rep.1.01064
  • Klagsbrun, M., D'Amore, P.A., Vascular endothelial growth factor and its receptors (1996) Cytokine and Growth Factor Reviews, 7 (3), pp. 259-270. , DOI 10.1016/S1359-6101(96)00027-5
  • Wulff, C., Wilson, H., Wiegand, S.J., Rudge, J.S., Fraser, H.M., Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor trap R1R2 (2002) Endocrinology, 143 (7), pp. 2797-2807. , DOI 10.1210/en.143.7.2797
  • Sato, S., Kanno, N., Abe, M., Ito Shitara, K., Shibuya, M., Properties of two VEGF receptors, Flt-1 and KDR, in signal transduction (2000) Ann. N.Y. Acad. Sci., 902, pp. 201-205
  • Shen, B.-Q., Lee, D.Y., Gerber, H.-P., Keyt, B.A., Ferrara, N., Zioncheck, T.F., Homologous up-regulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro (1998) Journal of Biological Chemistry, 273 (45), pp. 29979-29985. , DOI 10.1074/jbc.273.45.29979
  • Fujio, Y., Walsh, K., Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner (1999) J. Biol. Chem., 274, pp. 16349-16354
  • Banerjee, S., Mehta, S., Haque, I., Sengupta, K., Dhar, K., Kambhampati, S., Van Veldhuizen, P.J., Banerjee, S.K., VEGF-A165 induces human aortic smooth muscle cell migration by activating neuropilin-1-VEGFR1-PI3K axis (2008) Biochemistry, 47 (11), pp. 3345-3351. , DOI 10.1021/bi8000352
  • Walz, A., Keck, C., Weber, H., Kissel, C., Pietrowski, D., Effects of luteinizing hormone and human chorionic gonadotropin on corpus luteum cells in a spheroid cell culture system (2005) Molecular Reproduction and Development, 72 (1), pp. 98-104. , DOI 10.1002/mrd.20325
  • Morita, K., Sasaki, H., Furuse, M., Tsukita, S., Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells (1999) Journal of Cell Biology, 147 (1), pp. 185-194. , DOI 10.1083/jcb.147.1.185
  • Lippoldt, A., Liebner, S., Andbjer, B., Kalbacher, H., Wolburg, H., Haller, H., Fuxe, K., Organization of choroid plexus epithelial and endothelial cell tight junctions and regulation of claudin-1, -2 and -5 expression by protein kinase C (2000) NeuroReport, 11 (7), pp. 1427-1431
  • Hirase, T., Staddon, J.M., Saitou, M., Ando-Akatsuka, Y., Itoh, M., Furuse, M., Fujimoto, K., Rubin, L.L., Occludin as a possible determinant of tight junction permeability in endothelial cells (1997) Journal of Cell Science, 110 (14), pp. 1603-1613
  • Antonetti, D.A., Barber, A.J., Khin, S., Lieth, E., Tarbell, J.M., Gardner, T.W., Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content. Vascular endothelial growth factor decreases occludin in retinal endothelial cells (1998) Diabetes, 47 (12), pp. 1953-1959
  • Herr, D., Fraser, H.M., Konrad, R., Holzheu, I., Kreienberg, R., Wulff, C., Human chorionic gonadotropin controls luteal vascular permeability via vascular endothelial growth factor by down-regulation of a cascade of adhesion proteins (2013) Fertil. Steril., 99, pp. 1749-1758

Citas:

---------- APA ----------
Scotti, L., Abramovich, D., Pascuali, N., Irusta, G., Meresman, G., Tesone, M. & Parborell, F. (2014) . Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome. Journal of Steroid Biochemistry and Molecular Biology, 144(PART B), 392-401.
http://dx.doi.org/10.1016/j.jsbmb.2014.08.013
---------- CHICAGO ----------
Scotti, L., Abramovich, D., Pascuali, N., Irusta, G., Meresman, G., Tesone, M., et al. "Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome" . Journal of Steroid Biochemistry and Molecular Biology 144, no. PART B (2014) : 392-401.
http://dx.doi.org/10.1016/j.jsbmb.2014.08.013
---------- MLA ----------
Scotti, L., Abramovich, D., Pascuali, N., Irusta, G., Meresman, G., Tesone, M., et al. "Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome" . Journal of Steroid Biochemistry and Molecular Biology, vol. 144, no. PART B, 2014, pp. 392-401.
http://dx.doi.org/10.1016/j.jsbmb.2014.08.013
---------- VANCOUVER ----------
Scotti, L., Abramovich, D., Pascuali, N., Irusta, G., Meresman, G., Tesone, M., et al. Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome. J. Steroid Biochem. Mol. Biol. 2014;144(PART B):392-401.
http://dx.doi.org/10.1016/j.jsbmb.2014.08.013