Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Understanding protein-ligand interactions is a fundamental question in basic biochemistry, and the role played by the solvent along this process is not yet fully understood. This fact is particularly relevant in lectins, proteins that mediate a large variety of biological processes through the recognition of specific carbohydrates. In the present work, we have thoroughly analyzed a nonredundant and well-curated set of lectin structures looking for a potential relationship between the structural water properties in the apo-structures and the corresponding protein-ligand complex structures. Our results show that solvent structure adjacent to the binding sites mimics the ligand oxygen structural framework in the resulting protein-ligand complex, allowing us to develop a predictive method using a Naive Bayes classifier. We also show how these properties can be used to improve docking predictions of lectin-carbohydrate complex structures in terms of both accuracy and precision, thus developing a solid strategy for the rational design of glycomimetic drugs. Overall our results not only contribute to the understanding of protein-ligand complexes, but also underscore the role of the water solvent in the ligand recognition process. Finally, we discuss our findings in the context of lectin specificity and ligand recognition properties. © 2014 The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Registro:

Documento: Artículo
Título:Using crystallographic water properties for the analysis and prediction of lectin-carbohydrate complex structures
Autor:Modenutti, C.; Gauto, D.; Radusky, L.; Blanco, J.; Turjanski, A.; Hajos, S.; Marti, M.A.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IDEHU-CONICET, Buenos Aires, 1113, Argentina
Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
Palabras clave:carbohydrate; docking; hydration; lectin; Naive Bayes classifier; sites; water sites; carbohydrate; lectin; oxygen; water; disaccharide; lectin; monosaccharide; protein binding; trisaccharide; water; accuracy; amino acid composition; Article; Bayesian learning; binding site; carbohydrate analysis; crystal structure; crystallography; hydrogen bond; ligand binding; molecular docking; molecular recognition; predictive value; priority journal; protein analysis; protein interaction; protein structure; Bayes theorem; chemical structure; chemistry; conformation; X ray crystallography; Bayes Theorem; Binding Sites; Carbohydrate Conformation; Crystallography, X-Ray; Disaccharides; Lectins; Models, Molecular; Monosaccharides; Protein Binding; Trisaccharides; Water
Año:2015
Volumen:25
Número:2
Página de inicio:181
Página de fin:196
DOI: http://dx.doi.org/10.1093/glycob/cwu102
Título revista:Glycobiology
Título revista abreviado:Glycobiology
ISSN:09596658
CODEN:GLYCE
CAS:oxygen, 7782-44-7; water, 7732-18-5; Disaccharides; Lectins; Monosaccharides; Trisaccharides; Water
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09596658_v25_n2_p181_Modenutti

Referencias:

  • Abel, R., Young, T., Farid, R., Berne, B.J., Friesner, R.A., Role of the active-site solvent in the thermodynamics of factor Xa ligand binding (2008) J Am Chem Soc., 130 (9), pp. 2817-2831
  • Agostino, M., Jene, C., Boyle, T., Ramsland, P., Yuriev, E., Molecualr docking of carbohydrate ligands to antibodies: Structural validation against crystal structures (2009) J Chem Inf Model., 49, pp. 2749-2760
  • Andres, D., Gohlke, U., Broeker, N.K., Schulze, S., Rabsch, W., Heinemann, U., Barbirz, S., An essential serotype recognition pocket on phage P22 tailspike protein forces Salmonella enterica serovar Paratyphi A O-antigen fragments to bind as nonsolution conformers (2013) Glycobiology., 23 (4), pp. 486-494
  • Asensio, J.L., Cañada, F.J., Siebert, H.C., Laynez, J., Poveda, A., Nieto, P.M., Soedjanaamadja, U.M., Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains (2000) Chem Biol., 7 (7), pp. 529-543
  • Barillari, C., Duncan, A.L., Westwood, I.M., Blagg, J., Van Montfort, R.L.M., Analysis of water patterns in protein kinase binding sites (2011) Proteins., 79 (7), pp. 2109-2121
  • Barillari, C., Taylor, J., Viner, R., Essex, J.W., Classification of water molecules in protein binding sites (2007) J Am Chem Soc., 129 (9), pp. 2577-2587
  • Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., The Protein Data Bank. A computer-based archival file for macromolecular structures (1977) Eur Biochem/FEBS., 80 (2), pp. 319-324
  • Beuming, T., Che, Y., Abel, R., Kim, B., Shanmugasundaram, V., Sherman, W., Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization (2012) Proteins., 80 (3), pp. 871-883
  • Brooijmans, N., Kuntz, I.D., Molecular recognition and docking algorithms (2003) Annu Rev Biophy Biomol Struct., 32, pp. 335-373
  • Chervenak, M.C., Toone, E.J., Calorimetric analysis of the binding of lectins with overlapping carbohydrate-binding ligand specificities (1995) Biochem., 34 (16), pp. 5685-5695
  • Compagno, D., Jaworski, F.M., Gentilini, L., Contrufo, G., Gonzalez Perez, I., Elola, M.T., Pregi, N., Galectins: Major signaling modulators inside and outside the cell (2014) Curr Mol Med., 14 (5), pp. 630-651
  • Crouch, E., Hartshorn, K., Horlacher, T., McDonald, B., Smith, K., Cafarella, T., Seaton, B., Recognition of mannosylated ligands and influenza A virus by human surfactant protein D: Contributions of an extended site and residue 343 (2009) Biochem., 48 (15), pp. 3335-3345
  • Dam, T.K., Brewer, C.F., Lectins as pattern recognition molecules: The effects of epitope density in innate immunity (2010) Glycobiology., 20 (3), pp. 270-279
  • Di Lella, S., Martí, M.A., Alvarez, R.M.S., Estrin, D.A., Ricci, J.C.D., Characterization of the galectin-1 carbohydrate recognition domain in terms of solvent occupancy (2007) J Phys Chem B., 111 (25), pp. 7360-7366
  • Di Lella, S., Martí, M.A., Croci, D.O., Guardia, C.M., Díaz-Ricci, J.C., Rabinovich, G.A., Caramelo, J.J., Linking the structure and thermal stability of beta-galactoside-binding protein galectin-1 to ligand binding and dimerization equilibria (2010) Biochemistry., 49 (35), pp. 7652-7658
  • Englebienne, P., Moitessier, N., Docking ligands into flexible and solvated macromolecules. 5. Force-field-based prediction of binding affinities of ligands to proteins (2009) J Chem Inform Model., 49 (11), pp. 2564-2571
  • Fadda, E., Woods, R.J., Molecular simulations of carbohydrates and protein-carbohydrate interactions: Motivation, issues and prospects (2010) Drug Discov Today., 15 (15-16), pp. 596-609
  • Forli, S., Olson, A.J., A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking (2012) J Med Chem., 55 (2), pp. 623-638
  • Frank, M., Schloissnig, S., Bioinformatics and molecular modeling in glycobiology (2010) Cel Mol Life Sci., 67 (16), pp. 2749-2772
  • Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Glide: A newapproach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy (2004) J Med Chem., 47 (7), pp. 1739-1749
  • Gabius, H.-J., André, S., Jiménez-Barbero, J., Romero, A., Solís, D., From lectin structure to functional glycomics: Principles of the sugar code (2011) Trends Biochem Sci., 36 (6), pp. 298-313
  • Garcia-Sosa, A.T., Hydration properties of ligands and drugs in protein binding sites: Tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies (2013) J Chem Inform Model.
  • García-Sosa, A.T., Mancera, R.L., Dean, P.M., WaterScore: A novel method for distinguishing between bound and displaceable water molecules in the crystal structure of the binding site of protein-ligand complexes (2003) J Mol Model., 9 (3), pp. 172-182
  • Gauto, D.F., Di Lella, S., Estrin, D.A., Monaco, H.L., Martí, M.A., Structural basis for ligand recognition in a mushroom lectin: Solvent structure as specificity predictor (2011) Carbohy Res., 346 (7), pp. 939-948
  • Gauto, D.F., Di Lella, S., Guardia, C.M., Estrin, D.A., Martí, M.A., Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy (2009) J Phys Chem B., 113 (25), pp. 8717-8724
  • Gauto, D.F., Petruk, A.A., Modenutti, C.P., Blanco, J.I., Di Lella, S., Martí, M.A., Solvent structure improves docking prediction in lectin-carbohydrate complexes (2013) Glycobiology., 23 (2), pp. 241-258
  • Grant, O.C., Woods, R.J., Recent advances in employing molecular modelling to determine the specificity of glycan-binding proteins (2014) Curr Opin Struct Bio., 28 C, pp. 47-55
  • Green, P.J., Reversible jump Markov chain Monte Carlo computation and Bayesian model determination (1995) Biometrika., 82 (4), pp. 711-732
  • Guan, L., Hu, Y., Kaback, H.R., Aromatic stacking in the sugar binding site of the lactose permease (2003) Biochemistry., 42 (6), pp. 1377-1382
  • Guardia, C.M., Gauto, D.F., Di Lella, S., Rabinovich, G.A., Martí, M.A., Estrin, D.A., An integrated computational analysis of the structure, dynamics, and ligand binding interactions of the human galectin network (2011) J Chem Inform Model., 51 (8), pp. 1918-1930
  • Hastings, J., De Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., Muthukrishnan, V., The ChEBI reference database and ontology for biologically relevant chemistry: Enhancements for 2013 (2013) Nucleic Acids Rese., 41, pp. D456-D463. , database issue
  • Higgs, C., Beuming, T., Sherman, W., Hydration site thermodynamics explain SARs for triazolylpurines analogues binding to the A2A receptor (2010) ACS Med Chem Lett., 1 (4), pp. 160-164
  • Huang, N., Schoichet, B.R., Exploiting ordered waters in molecular docking (2008) J Med Chem., 52, pp. 4862-4865
  • Hummer, G., Molecular binding: Under water's influence (2010) Nat Chem., 2 (11), pp. 906-907
  • Johal, A.R., Jarrell, H.C., Letts, J.A., Khieu, N.H., Landry, R.C., Jachymek, W., Yang, Q., The antigen-binding site of an N-propionylated polysialic acidspecific antibody protective against group B meningococci is consistent with extended epitopes (2013) Glycobio., 23 (8), pp. 946-954
  • Kadirvelraj, R., Foley, B.L., Dyekjaer, J.D., Woods, R.J., Involvement of water in carbohydrate-protein binding: Concanavalin A revisited (2008) J Am Chem Soc., 130 (50), pp. 16933-16942
  • Kerzmann, A., Fuhrmann, J., Kohlbacher, O., Neumann, D., BALLDock/ SLICK: A new method for protein-carbohydrate docking (2008) J Chem Inform Model., 48 (8), pp. 1616-1625
  • Kumar, S., Frank, M., Schwartz-Albiez, R., Understanding the specificity of human Galectin-8C domain interactions with its glycan ligands based on molecular dynamics simulations (2013) PloS One., 8 (3), p. e59761
  • Laughrey, Z.R., Kiehna, S.E., Riemen, A.J., Waters, M.L., Carbohydrate-pi interactions: What are they worth? (2008) J Am Chem Soc., 130 (44), pp. 14625-14633
  • Lazaridis, T., Inhomogeneous fluid approach to solvation thermodynamics. 1 (1998) Theory. J Phys Chem B., 102 (18), pp. 3531-3541
  • Leach, A.R., Shoichet, B.K., Peishoff, C.E., Prediction of protein-ligand interactions. Docking and scoring: Successes and gaps (2006) J Med Chem., 49 (20), pp. 5851-5855
  • Li, Z., Lazaridis, T., The effect of water displacement on binding thermodynamics: Concanavalin A (2005) J Phys Chem B., 109 (1), pp. 662-670
  • Li, Z., Lazaridis, T., Thermodynamics of buried water clusters at a proteinligand binding interface (2006) J Phys Chem B., 110 (3), pp. 1464-1475
  • Lie, M.A., Thomsen, R., Pedersen, C.N.S., Schiøtt, B., Christensen, M.H., Molecular docking with ligand attached water molecules (2011) J Chem Inform Model., 51 (4), pp. 909-917
  • Lütteke, T., Frank, M., Von Der Lieth, C.-W., Carbohydrate structure suite(CSS): Analysis of carbohydrate 3D structures derived from the PDB (2005) Nucleic Acids Res., 33, pp. D242-D246. , database issue
  • Maruyama, O., Heterodimeric protein complex identification by Naïve Bayes classifiers (2013) BMC Bioinform., 14, p. 347
  • Michel, J., Tirado-Rives, J., Jorgensen, W.L., Energetics of displacing water molecules from protein binding sites: Consequences for ligand optimization (2009) J Am Chem Soc., 9 (9), pp. 15403-15411
  • Mishra, S.K., Adam, J., Wimmerová, M., Koca, J., In silico mutagenesis and docking study of Ralstonia solanacearum RSL lectin: Performance of docking software to predict saccharide binding (2012) J Chem Inform Model., 52 (5), pp. 1250-1261
  • Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function (1998) J Comput Chem., 19 (14), pp. 1639-1662
  • Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility (2009) J Comput Chem., 30, pp. 2785-2791
  • Nishio, M., Umezawa, Y., Fantini, J., Weiss, M.S., Chakrabarti, P., CH-? Hydrogen bonds in biological macromolecules (2014) Phy Chem Phys., 16 (25), pp. 12648-12683. , The Royal Society of Chemistry
  • Nivedha, A.K., Makeneni, S., Foley, B.L., Tessier, M.B., Woods, R.J., Importance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaff (2014) J Comput Chem., 35 (7), pp. 526-539
  • Patil, A., Huard, D., Fonnesbeck, C.J., PyMC: Bayesian stochastic modelling in Python (2010) J Stat Software., 35 (4), pp. 1-81
  • Ranzinger, R., Herget, S., Wetter, T., Von Der Lieth, C.-W., GlycomeDB-Integration of open-access carbohydrate structure databases (2008) BMC Bioinform., 9, p. 384
  • Rarey, M., Kramer, B., Lengauer, T., The particle concept: Placing discrete water molecules during protein-ligand docking predictions (1999) Proteins., 34 (1), pp. 17-28
  • Saraboji, K., Håkansson, M., Genheden, S., Diehl, C., Qvist, J., Weininger, U., Nilsson, U.J., The carbohydrate-binding site in galectin-3 is preorganized to recognize a sugarlike framework of oxygens: Ultrahigh-resolution structures and water dynamics (2012) Biochemistry., 51 (1), pp. 296-306
  • Setny, P., Baron, R., McCammon, J., How can hydrophobic association be enthalpy driven? (2010) J Chem Theory Comput., 6 (9), pp. 2866-2871
  • Sujatha, M.S., Sasidhar, Y.U., Balaji, P.V., Energetics of galactose-and glucose-aromatic amino acid interactions: Implications for binding in galactose-specific proteins (2004) Protein Sci Publ Protein Soc., 13 (9), pp. 2502-2514
  • Taylor, R.D., Jewsbury, P.J., Essex, J.W., A review of protein-small molecule docking methods (2002) J Comput Aided Mol Des., 16 (3), pp. 151-166
  • Terraneo, G., Potenza, D., Canales, A., Jiménez-Barbero, J., Baldridge, K.K., Bernardi, A., A simple model system for the study of carbohydrate-Aromatic interactions (2007) J Am Chem Soc., 129 (10), pp. 2890-2900
  • Von Der Lieth, C.-W., Freire, A.A., Blank, D., Campbell, M.P., Ceroni, A., Damerell, D.R., Dell, A., EUROCarbDB: An open-access platform for glycoinformatics (2011) Glycobiology., 21 (4), pp. 493-502
  • Von Schantz, L., Håkansson, M., Logan, D.T., Walse, B., Osterlin, J., Nordberg-Karlsson, E., Ohlin, M., Structural basis for carbohydratebinding specificity-A comparative assessment of two engineered carbohydrate-binding modules (2012) Glycobiology., 22 (7), pp. 948-961
  • Wang, J.-C., Lin, J.-H., Chen, C.-M., Perryman, A.L., Olson, A.J., Robust scoring functions for protein-ligand interactions with quantum chemical charge models (2011) J Chem Inform Mode., 51 (10), pp. 2528-2537
  • Yoshida, H., Teraoka, M., Nishi, N., Nakakita, S., Nakamura, T., Hirashima, M., Kamitori, S., X-ray structures of human galectin-9 C-terminal domain in complexes with a biantennary oligosaccharide and sialyllactose (2010) J Biol Chem., 285 (47), pp. 36969-36976
  • Yuriev, E., Agostino, M., Ramsland, P.A., Challenges and advances in computational docking: 2009 in review (2009) J Recogn., 24 (2), pp. 149-164

Citas:

---------- APA ----------
Modenutti, C., Gauto, D., Radusky, L., Blanco, J., Turjanski, A., Hajos, S. & Marti, M.A. (2015) . Using crystallographic water properties for the analysis and prediction of lectin-carbohydrate complex structures. Glycobiology, 25(2), 181-196.
http://dx.doi.org/10.1093/glycob/cwu102
---------- CHICAGO ----------
Modenutti, C., Gauto, D., Radusky, L., Blanco, J., Turjanski, A., Hajos, S., et al. "Using crystallographic water properties for the analysis and prediction of lectin-carbohydrate complex structures" . Glycobiology 25, no. 2 (2015) : 181-196.
http://dx.doi.org/10.1093/glycob/cwu102
---------- MLA ----------
Modenutti, C., Gauto, D., Radusky, L., Blanco, J., Turjanski, A., Hajos, S., et al. "Using crystallographic water properties for the analysis and prediction of lectin-carbohydrate complex structures" . Glycobiology, vol. 25, no. 2, 2015, pp. 181-196.
http://dx.doi.org/10.1093/glycob/cwu102
---------- VANCOUVER ----------
Modenutti, C., Gauto, D., Radusky, L., Blanco, J., Turjanski, A., Hajos, S., et al. Using crystallographic water properties for the analysis and prediction of lectin-carbohydrate complex structures. Glycobiology. 2015;25(2):181-196.
http://dx.doi.org/10.1093/glycob/cwu102