Artículo

Guardia, C.M.; Caramelo, J.J.; Trujillo, M.; Méndez-Huergo, S.P.; Radi, R.; Estrin, D.A.; Rabinovich, G.A. "Structural basis of redox-dependent modulation of galectin-1 dynamics and function" (2014) Glycobiology. 24(5):428-441
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Galectin-1 (Gal-1), a member of a family of multifunctional lectins, plays key roles in diverse biological processes including cell signaling, immunomodulation, neuroprotection and angiogenesis. The presence of an unusual number of six cysteine residues within Gal-1 sequence prompted a detailed analysis of the impact of the redox environment on the functional activity of this lectin. We examined the role of each cysteine residue in the structure and function of Gal-1 using both experimental and computational approaches. Our results show that: (i) only three cysteine residues present in each carbohydrate recognition domain (CRD) (Cys2, Cys16 and Cys88) were important in protein oxidation, (ii) oxidation promoted the formation of the Cys16-Cys88 disulfide bond, as well as multimers through Cys2, (iii) the oxidized protein did not bind to lactose, probably due to poor interactions with Arg48 and Glu71, (iv) in vitro oxidation by air was completely reversible and (v) oxidation by hydrogen peroxide was relatively slow (1.7 ± 0.2 M-1 s-1 at pH 7.4 and 25°C). Finally, an analysis of key cysteines in other human galectins is also provided in order to predict their behaviour in response to redox variations. Collectively, our data provide new insights into the structural basis of Gal-1 redox regulation with critical implications in physiology and pathology. © The Author 2014.

Registro:

Documento: Artículo
Título:Structural basis of redox-dependent modulation of galectin-1 dynamics and function
Autor:Guardia, C.M.; Caramelo, J.J.; Trujillo, M.; Méndez-Huergo, S.P.; Radi, R.; Estrin, D.A.; Rabinovich, G.A.
Filiación:Department of Inorganic, Analytical and Chemical Physics/INQUIMAE-CONICET, University of Buenos Aires, Ciudad de Buenos Aires, C1428EHA, Argentina
Department of Biological Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, Ciudad de Buenos Aires, C1428EHA, Argentina
Laboratory of Structural and Cellular Biology, Fundación Instituto Leloir, Ciudad de Buenos Aires C1405BWE, Argentina
Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo UY-11800, Uruguay
Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo UY-11800, Uruguay
Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME-CONICET), C1428ADN Ciudad de Buenos Aires, Argentina
Palabras clave:circular dichroism; cysteine; galectin-1; molecular dynamics; oxidation; arginine; carbohydrate; carbohydrate recognition domain; cysteine; galectin 1; glutamic acid; hydrogen peroxide; lactose; polymer; unclassified drug; galectin 1; LGALS1 protein, human; amino acid sequence; article; binding affinity; cell viability; circular dichroism; conformational transition; controlled study; disulfide bond; human; in vitro study; molecular dynamics; nonhuman; oxidation; pH; priority journal; protein expression; protein function; protein interaction; protein structure; regulatory mechanism; structure activity relation; T lymphocyte; chemistry; metabolism; molecular dynamics; oxidation reduction reaction; protein tertiary structure; Galectin 1; Humans; Hydrogen Peroxide; Molecular Dynamics Simulation; Oxidation-Reduction; Protein Structure, Tertiary
Año:2014
Volumen:24
Número:5
Página de inicio:428
Página de fin:441
DOI: http://dx.doi.org/10.1093/glycob/cwu008
Título revista:Glycobiology
Título revista abreviado:Glycobiology
ISSN:09596658
CODEN:GLYCE
CAS:arginine, 1119-34-2, 15595-35-4, 7004-12-8, 74-79-3; cysteine, 4371-52-2, 52-89-1, 52-90-4; galectin 1, 258495-34-0; glutamic acid, 11070-68-1, 138-15-8, 56-86-0, 6899-05-4; hydrogen peroxide, 7722-84-1; lactose, 10039-26-6, 16984-38-6, 63-42-3, 64044-51-5; Galectin 1; Hydrogen Peroxide; LGALS1 protein, human
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09596658_v24_n5_p428_Guardia

Referencias:

  • Abbott, W.M., Feizi, T., Soluble 14-kDa beta-galactoside-specific bovine lectin Evidence from mutagenesis and proteolysis that almost the complete polypeptide chain is necessary for integrity of the carbohydrate recognition domain (1991) J Biol Chem., 266, pp. 5552-5557
  • Anisimov, V.N., Cavasotto, C.N., Quantum mechanical binding free energy calculation for phosphopeptide inhibitors of the Lck SH2 domain (2011) J Comput Chem., 32, pp. 2254-2263
  • Ashraf, G.M., Banu, N., Ahmad, A., Singh, L.P., Kumar, R., Purification, characterization, sequencing and biological chemistry of galectin-1 purified from Capra hircus (goat) heart (2011) Protein J., 30, pp. 39-51
  • Baker, L.M., Poole, L.B., Catalytic mechanism of thiol peroxidase from Escherichia coli Sulfenic acid formation and overoxidation of essential CYS61 (2003) J Biol Chem., 278, pp. 9203-9211
  • Bas, D.C., Rogers, D.M., Jensen, J.H., Very fast prediction and rationalization of pKa values for protein-ligand complexes (2008) Proteins., 73, pp. 765-783
  • Bashford, D., Case, D.A., Generalized born models of macro-molecular solvation effects (2000) Annu Rev Phys Chem., 51, pp. 129-152
  • Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R., Molecular-dynamics with coupling to an external bath (1984) J Chem Phys., 81, pp. 3684-3690
  • Blidner, A.G., Rabinovich, G.A., Sweetening' pregnancy: Galectins at the fetomaternal interface (2013) Am J Reprod Immunol., 69, pp. 369-382
  • Brigelius-Flohé, R., Flohé, L., Basic principles and emerging concepts in the redox control of transcription factors (2011) Antioxid Redox Sign., 15, pp. 2335-2381
  • Carballal, S., Radi, R., Kirk, M.C., Barnes, S., Freeman, B.A., Alvarez, B., Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite (2003) Biochemistry., 42, pp. 9906-9914
  • Case, D.A., Darden, T.A., Cheatham III, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Crowley, M., (2006) AMBER 9. San Francisco, , CA: University of California
  • Cho, M., Cummings, R.D., Characterization of monomeric forms of galectin-1 generated by site-directed mutagenesis (1996) Biochemistry., 35, pp. 13081-13088
  • Clackson, T., Detlef, G., Jones, P.T., (1991) General application of PCR to gene cloning and manipulation, , In: McPherson M.J., Quirke P., Taylor G.R., editors. PCR, a practical approach. Oxford: IRL Press at Oxford University Press
  • Cooper, D.N.W., Galectinomics: Finding themes in complexity (2002) Biochim Biophys Acta., 1572, pp. 209-231
  • Dam, T.K., Brewer, C.F., Maintenance of cell surface glycan density by lectin-glycan interactions: A homeostatic and innate immune regulatory mechanism (2010) Glycobiology., 20, pp. 1061-1064
  • Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., Toledano, M.B., A thiol peroxidase is an H2O2 receptor and redox-Transducer in gene activation (2002) Cell., 111, pp. 471-481
  • Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., Denicola, A., Factors affecting protein thiol reactivity and specificity in peroxide reduction (2011) Chem Res Toxicol., 24, pp. 434-450
  • Flohé, L., Toppo, S., Cozza, G., Ursini, F., A comparison of thiol peroxidase mechanisms (2011) Antioxid Redox Sign., 15, pp. 763-780
  • Flohé, L., Ursini, F., Peroxidase: A term of many meanings (2008) Antioxid Redox Sign., 10, pp. 1485-1490
  • Georgiou, G., Masip, L., Biochemistry An overoxidation journey with a return ticket (2003) Science., 300, pp. 592-594
  • Goldman, R., Stoyanovsky, D.A., Day, B.W., Kagan, V.E., Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides An antioxidant function of thioredoxin (1995) Biochemistry., 34, pp. 4765-4772
  • Guardia, C.M.A., Gauto, D.F., Di Lella, S., Rabinovich, G.A., Marti, M.A., Estrin, D.A., An integrated computational analysis of the structure, dynamics and ligand binding interactions of the human galectin network (2011) J Chem Inf Model., 51, pp. 1918-1930
  • Hirabayashi, J., Kasai, K., Effect of amino acid substitution by siteddirected mutagenesis on the carbohydrate recognition and stability of human 14-kDa beta-galactoside-binding lectin (1991) J Biol Chem., 266, pp. 23648-23653
  • Hirabayashi, J., Kawasaki, H., Suzuki, K., Kasai, K., Complete amino acid sequence of 14 kDa beta-galactoside-binding lectin of chick embryo (1987) J Biochem (Tokyo)., 101, pp. 987-995
  • Hornak, V., Aberl, R., Okur, A., Strockbine, B., Roitberg, A.E., Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters (2006) Proteins., 65, pp. 712-725
  • Hou, T., Wang, J., Li, Y., Wang, W., Assessing the performance of the MM/ PBSA and MM/GBSA methods: I. The accuracy of binding free energy calculations based on molecular dynamics simulations (2011) J Chem Inf Model., 51, pp. 69-82
  • Humphrey, W., Dalke, A., Schulten, K., VMD-visual molecular dynamics (1996) J Molec Graphics., 14, pp. 33-38
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M., Salatino, M., Vermeuen, M.E., Geffner, J.R., Rabinovich, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat Immunol., 10, pp. 981-991
  • Inagaki, Y., Sohma, Y., Horie, H., Nozawa, R., Kadoya, T., Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties (2000) Eur J Biochem., 267, pp. 2955-2964
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J Chem Phys., 79, pp. 926-935
  • Kadoya, T., Horie, H., Structural and functional studies of galectin-1: A novel axonal regeneration-promoting activity for oxidized galectin-1 (2005) Curr Drug Targets., 6, pp. 375-383
  • Kirschner, K.N., Yongye, A.B., Tschampel, S.M., González-Outeiriño, J., Daniels, C.R., Foley, B.L., Woods, R.J., GLYCAM06: A generalizable biomolecular force field. Carbohydrates (2008) J Comput Chem., 29, pp. 622-655
  • Knapp, B., Lederer, N., Omasits, U., Schreiner, W., VmdICE: A plug-in for rapid evaluation of molecular dynamics simulations using VMD (2010) J Comput Chem., 31, pp. 2868-2873
  • Kongsted, J., Söderhjelm, P., Ryde, U., How accurate are continuum solvation models for drug-like molecules? (2009) J Comput Aided Mol Des., 23, pp. 395-409
  • Lange, F., Brandt, B., Tiedge, M., Jonas, L., Jeschke, U., Pöhland, R., Walzel, H., Galectin-1 induced activation of the mitochondrial apoptotic pathway: Evidence for a connection between death-receptor and mitochondrial pathways in human Jurkat T lymphocytes (2009) Histochem Cell Biol., 132, pp. 211-223
  • Lopez-Lucendo, M.F., Solis, D., Andre, S., Hirabayashi, J., Kasai, K., Kaltner, H., Gabius, H.J., Romero, A., Growth-regulatory human galectin-1: Crystallographic characterisation of the structural changes induced by singlesite mutations and their impact on the thermodynamics of ligand binding (2004) J Mol Biol., 343, pp. 957-970
  • Nishi, N., Abe, A., Iwaki, J., Yoshida, H., Itoh, A., Shoji, H., Kamitori, S., Nakamura, T., Functional and structural bases of a cysteine-less mutant as a long-lasting substitute for galectin-1 (2008) Glycobiology., 18, pp. 1065-1073
  • Oda, Y., Kasai, K., Purification and characterization of beta-galactoside-binding lectin from chick embryonic skin (1983) Biochim Biophys Acta., 761, pp. 237-245
  • Pace, K.E., Hahn, H.P., Baum, L.G., Preparation of recombinant human galectin-1 and use in T-cell death assays (2003) Methods Enzymol., 363, pp. 499-518
  • Pande, A.H., Gupta Sumati, R.K., Hajela, K., Oxidation of goat hepatic galectin-1 induces change in secondary structure (2003) Protein Pept Lett., 10, pp. 265-275
  • Pascual, M.B., Mata-Cabana, A., Florencio, F.J., Lindahl, M., Cejudo, F.J., Overoxidation of 2-Cys peroxiredoxin in prokaryotes: Cyanobacterial 2-Cys peroxiredoxins sensitive to oxidative stress (2010) J Biol Chem., 285, pp. 34485-34492
  • Pe'er, I., Felder, C.E., Man, O., Silman, I., Sussman, J.L., Beckmann, J.S., Proteomic signatures: Amino acid and oligopeptide compositions differentiate among phyla (2004) Proteins., 54, pp. 20-40
  • Perillo, N.L., Pace, K.E., Seilhamer, J.J., Baum, L.G., Apoptosis of T cells mediated by galectin-1 (1995) Nature., 378, pp. 736-739
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer (2012) Immunity., 36, pp. 322-335
  • Rabinovich, G.A., Ilarregui, J.M., Conveying glycan information into T-cell homeostatic programs: A challenging role for galectin-1 in inflammatory and tumor microenvironments (2009) Immunol Rev., 230, pp. 144-159
  • Riddles, P.W., Blakeley, R.L., Zerner, B., Ellmans reagent-5,5′-dithiobis (2-nitrobenzoic acid)-Re-examination (1979) Anal Biochem., 94, pp. 75-81
  • Shahwan, M., Al-Qirim, M.T., Zaidi, S.M.K.R., Banu, N., Physicochemical properties and amino acid sequence of sheep brain galectin-1 (2004) Biochemistry (Moscow)., 69, pp. 506-512
  • Starossom, S.C., Mascanfroni, I.D., Imitola, J., Cao, L., Raddassi, K., Hernandez, S.F., Bassil, R., Delacour, D., Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration (2012) Immunity., 37, pp. 249-263
  • Still, W.C., Tempczyrk, A., Hawley, R.C., Hendrickson, T., Semianalytical treatment of solvation for molecular mechanics and dynamics (1990) J Am Chem Soc., 112, pp. 6127-6129
  • Stone, J.R., Yang, S., Hydrogen peroxide: A signaling messenger (2006) Antioxid Redox Sign., 8, pp. 243-270
  • Stowell, S.R., Cho, M., Feasley, C.L., Arthur, C.M., Song, X., Colucci, J.K., Karmakar, S., McEver, R.P., Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation (2009) J Biol Chem., 284, pp. 4989-4999
  • St-Pierre, C., Manya, H., Ouellet, M., Clark, G.F., Endo, T., Tremblay, M.J., Sato, S., Galectin-1-specific inhibitors as a new class of compounds to treat HIV-1 infection (2011) J Virol., 85, pp. 11742-11751
  • Than, N.G., Romero, R., Erez, O., Weckle, A., Tarca, A.L., Hotra, J., Abbas, A., Kusanovic, J.P., Emergence of hormonal and redox regulation of galectin-1 in placental mammals: Implication in maternal-fetal immune tolerance (2008) Proc Natl Acad Sci USA., 105, pp. 15819-15824
  • Thijssen, V.L., Rabinovich, G.A., Griffioen, A.W., Vascular galectins: Regulators of tumor progression and targets for cancer therapy (2013) Cytokine Growth Factor Rev., 24, pp. 547-558
  • Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res., 22, pp. 4673-4680
  • Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Zwirner, N.W., Baum, L.G., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat Immunol., 8, pp. 825-834
  • Tracey, B.M., Feizi, T., Abbott, W.M., Carruthers, R.A., Green, B.N., Lawson, A.M., Subunit molecular mass assignment of 14,654 Da to the soluble beta-galactoside-binding lectin from bovine heart muscle and demonstration of intramolecular disulfide bonding associated with oxidative inactivation (1992) J Biol Chem., 267, pp. 10342-10347
  • Trujillo, M., Ferrer-Sueta, G., Thomson, L., Flohé, L., Radi, R., Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite (2007) Subcell Biochem., 44, pp. 83-113
  • Van Gunsteren, W.F., Berendsen, H.J.C., Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry (1990) Angew Chem Int Ed Engl., 29, pp. 992-1023
  • Vasta, G.R., Ahmed, H., (2009) Animal Galectins, , Boca Raton, FL CRC Press
  • Veal, E., Day, A., Hydrogen peroxide as a signaling molecule (2011) Antioxid Redox Sign., 15, pp. 147-151
  • Whitney, P., Powell, J.T., Sanford, G.L., Oxidation and chemical modification of lung beta-galactoside-specific lectin (1986) Biochem J., 238, pp. 683-689
  • Winterbourn, C.C., Metodiewa, D., Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide (1999) Free Radic Biol Med., 27, pp. 322-328
  • Zou, X., Sun, Y., Kuntz, I.D., Inclusion of solvation in ligand binding free energy calculations using the generalized-Born model (1999) J Am Chem Soc., 121, pp. 8033-8043

Citas:

---------- APA ----------
Guardia, C.M., Caramelo, J.J., Trujillo, M., Méndez-Huergo, S.P., Radi, R., Estrin, D.A. & Rabinovich, G.A. (2014) . Structural basis of redox-dependent modulation of galectin-1 dynamics and function. Glycobiology, 24(5), 428-441.
http://dx.doi.org/10.1093/glycob/cwu008
---------- CHICAGO ----------
Guardia, C.M., Caramelo, J.J., Trujillo, M., Méndez-Huergo, S.P., Radi, R., Estrin, D.A., et al. "Structural basis of redox-dependent modulation of galectin-1 dynamics and function" . Glycobiology 24, no. 5 (2014) : 428-441.
http://dx.doi.org/10.1093/glycob/cwu008
---------- MLA ----------
Guardia, C.M., Caramelo, J.J., Trujillo, M., Méndez-Huergo, S.P., Radi, R., Estrin, D.A., et al. "Structural basis of redox-dependent modulation of galectin-1 dynamics and function" . Glycobiology, vol. 24, no. 5, 2014, pp. 428-441.
http://dx.doi.org/10.1093/glycob/cwu008
---------- VANCOUVER ----------
Guardia, C.M., Caramelo, J.J., Trujillo, M., Méndez-Huergo, S.P., Radi, R., Estrin, D.A., et al. Structural basis of redox-dependent modulation of galectin-1 dynamics and function. Glycobiology. 2014;24(5):428-441.
http://dx.doi.org/10.1093/glycob/cwu008