Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Abnormal glycosylation is a typical hallmark of the transition from healthy to neoplastic tissues. Although the importance of glycans and glycan-binding proteins in cancer-related processes such as tumor cell adhesion, migration, metastasis and immune escape has been largely appreciated, our awareness of the impact of lectin-glycan recognition in tumor vascularization is relatively new. Regulated glycosylation can influence vascular biology by controlling trafficking, endocytosis and signaling of endothelial cell (EC) receptors including vascular endothelial growth factor receptors, platelet EC adhesion molecule, Notch and integrins. In addition, glycans may control angiogenesis by regulating migration of endothelial tip cells and influencing EC survival and vascular permeability. Recent evidence indicated that changes in the EC surface glycome may also serve “on-and-offâ€switches that control galectin binding to signaling receptors by displaying or masking-specific glycan epitopes. These glycosylation-dependent lectin-receptor interactions can link tumor hypoxia to EC signaling and control tumor sensitivity to anti-angiogenic treatment. © The Author 2014. Published by Oxford University Press. All rights reserved.

Registro:

Documento: Artículo
Título:Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment
Autor:Croci, D.O.; Cerliani, J.P.; Pinto, N.A.; GMorosi, L.; Rabinovich, G.A.
Filiación:Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y TÃcnicas (CONICET), Buenos Aires, 1428, Argentina
Laboratorio de Glicómica Funcional, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Palabras clave:Angiogenesis; Galectin-1; Galectins; Glycosylation; Hypoxia; Immunotherapy; Lectins; Vasculature; activated leukocyte cell adhesion molecule; angiopoietin 2; fibroblast growth factor 2; galectin; galectin 1; galectin 2; galectin 4; galectin 8; glycan; glycosyltransferase; granulocyte colony stimulating factor; interleukin 17; interleukin 6; interleukin 8; lectin receptor; mannosidase; neuropilin 1; placental growth factor; platelet derived growth factor beta receptor; scatter factor; sulfotransferase; vasculotropin receptor 2; angiogenesis inhibitor; polysaccharide; amino terminal sequence; angiogenesis; antiangiogenic therapy; blood vessel permeability; breast cancer; cell differentiation; cell maturation; cell migration; cell proliferation; cell survival; dendritic cell; down regulation; endothelium cell; gene expression; glioblastoma; glycosylation; human; hypoxia; Kaposi sarcoma; lung adenocarcinoma; melanoma; microglia; nonhuman; pancreas adenocarcinoma; preeclampsia; priority journal; prostate adenocarcinoma; Review; signal transduction; T cell lymphoma; Th1 cell; Th17 cell; tumor biopsy; tumor microenvironment; tumor vascularization; upregulation; vascular biology; anoxia; metabolism; Neoplasms; Neovascularization, Pathologic; Angiogenesis Inhibitors; Anoxia; Endothelial Cells; Glycosylation; Humans; Neoplasms; Neovascularization, Pathologic; Polysaccharides; Signal Transduction
Año:2014
Volumen:24
Número:12
Página de inicio:1283
Página de fin:1290
DOI: http://dx.doi.org/10.1093/glycob/cwu083
Título revista:Glycobiology
Título revista abreviado:Glycobiology
ISSN:09596658
CODEN:GLYCE
CAS:angiopoietin 2, 194368-66-6; fibroblast growth factor 2, 106096-93-9; galectin 1, 258495-34-0; galectin 8, 220452-97-1; glycosyltransferase, 9033-07-2; interleukin 8, 114308-91-7; mannosidase, 37211-66-8; neuropilin 1, 214210-47-6, 339035-30-2; scatter factor, 67256-21-7, 72980-71-3; sulfotransferase, 9023-09-0; Angiogenesis Inhibitors; Polysaccharides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09596658_v24_n12_p1283_Croci

Referencias:

  • Bastón, J.I., Barañao, R.I., Ricci, A.G., Bilotas, M.A., Olivares, C.N., Singla, J.J., Gonzalez, A.M., Rabinovich, G.A., Targeti ng galectin-1-induced angiogenesis mitigates the severity of endometriosis (2014) J Pathol
  • Bax, M., García-Vallejo, J.J., Jang-Lee, J., North, S.J., Gilmartin, T.J., Hernández, G., Crocker, P.R., Haslam, S.M., Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins (2007) J Immunol, 179, pp. 8216-8224
  • Benedito, R., Roca, C., Sorensen, I., Adams, S., Gossler, A., Fruttiger, M., Adams, R.H., The notch ligands dll4 and jagged1 have opposing effects on angiogenesis (2009) Cell, 137, pp. 1124-1135
  • Bergers, G., Hanahan, D., Modes of resistance to anti-Angiogenic therapy (2008) Nat Rev Cancer, 8, pp. 592-603
  • Boscher, C., Dennis, J.W., Nabi, I.R., Glycosylation, galectins and cellular signaling (2011) Curr Opin Cell Biol, (23), pp. 383-392
  • Cardenas-Delgado, V.M., Nugnes, L.G., Colombo, L.L., Troncoso, M.F., Fernandez, M.M., Malchiodi, E.L., Malchiodi, E.L., Compagno, D., Modulation of endothelial cell migration a nd angiogenesis: A novel function for the tandem-repeat lectin galectin-8 (2011) FASEB J, 25, pp. 242-254
  • Carlini, M.J., Roitman, P., Nuñez, M., Pallotta, M.G., Boggio, G., Smith, D., Salatino, M., Puricelli, L.I., Clinical relevance of galectin-1 expression in non-small cell lung cancer patients (2014) Lung Cancer, (84), pp. 73-78
  • Carmeliet, P., Jain, R.K., Molecular mechanisms and clinical applications of angiogenesis (2011) Nature, 473, pp. 298-307
  • Chen, C., Duckworth, C.A., Fu, B., Pritchard, D.M., Rhodes, J.M., Yu, L.G., Circulating galectins-2,-4 and-8 in cancer patients make important contributions to the increased circulation of sev eral cytokines and chemokines that promote angiogenesis and metastasis (2014) Br J Cancer, (110), pp. 741-752
  • Chung, A.S., Wu, X., Zhuang, G., Ngu, H., Kasman, I., Zhang, J., Vernes, J.M., Peale, F.V., An il-17-mediated paracrine network promotes tumor resistance to anti-Angiogenic therapy (2013) Nat Med, (19), pp. 1114-1123
  • Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Méndez-Huergo, S.P., Mascanfroni, D.I., Dergan-Dylon, L.S., Toscano, M.A., Ouyang, J., Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-vegf refractory tumors (2014) Cell, 156, pp. 744-758
  • Croci, D.O., Salatino, M., Rubinstein, N., Cerliani, J.P., Cavallin, L.E., Leung, H.J., Ouyang, J., Domaica, C.I., Disrupting galectin-1 interactions with n-glycans suppresses hypoxia-dri ven angiogenesis and tumorigenesis in kaposi's sarcoma (2012) J Exp Med, 209, pp. 1985-2000
  • Dalotto-Moreno, T., Croci, D.O., Cerliani, J.P., Martinez-Allo, V.C., Dergan-Dylon, S., Méndez-Huergo, S.P., Stupirski, J.C., Toscano, M.A., Targeting galectin-1 overcomes breast cancer-Associated immunosuppression and prevents metastatic disease (2013) Cancer Res, 73, pp. 1107-1117
  • De Palma, M., Venneri, M.A., Galli, R., Sergi Sergi, L., Politi, L.S., Sampaolesi, M., Naldini, L., Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal pop ulation of pericyte progenitors (2005) Cancer Cell, 8, pp. 211-226
  • D'Haene, N., Sauvage, S., Maris, C., Adanja, I., Le Mercier, M., Decaestecker, C., Baum, L., Salmon, I., Vegfr1 and vegfr2 involvement in extra cellular galectin-1-And galectin-3-induced angiogenesis (2013) PLoS ONE, 8, p. e67029
  • Dings, R.P., Loren, M., Heun, H., McNiel, E., Griffioen, A.W., Mayo, K.H., Griffin, R.J., Scheduling of radiation with angiogenesi s inhibitors anginex and avastin improves therapeutic outcome via vessel normalization (2007) Clin Cancer Res, 13, pp. 3395-3402
  • Ebos, J.M., Lee, C.R., Cruz-Munoz, W., Bjarnason, G.A., Christensen, J.G., Kerbel, R.S., Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis (2009) Cancer Cell, 15, pp. 232-239
  • Etulain, J., Negrotto, S., Tribulatti, M.V., Croci, D.O., Carabelli, J., Campetella, O., Rabinovich, G.A., Schattner, M., Control of angiogenesis by galectins involves the release of platelet-derived proangiogenic factors (2014) PLoS ONE, 4, p. e96402
  • Ferrara, N., Hillan, K.J., Gerber, H.P., Novotny, W., Discovery and development of bevacizumab, an anti-vegf antibody for treating cancer (2004) Nat Rev Drug Discov, 5, pp. 391-400
  • Folkman, J., Tumor angiogenesis: Therapeutic implications (1971) N Engl J Med, 285, pp. 1182-1186
  • Freitag, N., Tirado-González, I., Barrientos, G., Herse, F., Thijssen, V.L., Weedon-Fekjaer, S.M., Schulz, H., Nevers, T., Interfering with gal-1-mediated angiogenesis contributes to the pathogenesis of preeclampsia (2013) Proc Natl Acad Sci USA, 110, pp. 11451-11456
  • Garcia-Vallejo, J.J., Van Dijk, W., Van Het Hof, B., Van Die, I., Engelse, M.A., Van Hinsbergh, V.W., Gringhuis, S.I., Activation of human endothelial cells by tumor necrosis factor-Alpha results in profound changes in the expression of glycosylation-related genes (2006) J Cell Physiol, 206, pp. 203-210
  • Garner, O.B., Baum, L.G., Galect in-glycan lattices regulate cell-surface glycoprotein organization and signalling (2008) Biochem Soc Trans, 6, pp. 1472-1477
  • Hattori, K., Heissig, B., Wu, Y., Dias, S., Tejada, R., Ferris, B., Hicklin, D.J., Witte, L., Placental growth factor reconstitutes hematopoiesis by recruiting vegfr1(+) stem cells from bone-marrow microenvironment (2002) Nat Med, 8, pp. 841-849
  • Heusschen, R., Schulkens, I.A., Van Beijnum, J., Griffioen, A.W., Thijssen, V.L., Endothelial lgals9 splice variant expression in endothelial cell biology and angiogenesis (2014) Biochim Biophys Acta, pp. 284-292. , 18422
  • Hodi, F.S., Lawrence, D., Lezcano, C., Wu, X., Zhou, J., Sasada, T., Zeng, W., Ibrahim, N., Bevacizumab plus ipilimumab in patients with metastatic melanoma (2014) Cancer Immunol Res, (2), pp. 632-642
  • Hsieh, S.H., Ying, N.W., Wu, M.H., Chiang, W.F., Hsu, C.L., Wong, T.Y., Galectin-1, a novel ligand of neuropilin-1, activates vegfr-2 signaling and modulates the migration of vascular endothelial cells (2008) Oncogene, 26, pp. 3746-3753
  • Kerbel, R.S., Tumor angiogenesis (2008) N Engl J Med, 358, pp. 2039-2049
  • Ki, M.K., Jeoung, M.H., Choi, J.R., Rho, S.S., Kwon, Y.G., Shim, H., Chung, J., Lee, S., Human antibodies targeting the c-type lectin-like domain of the tumor endothelial cell marker clec14a regulate angiogenic properties in vitro (2013) Oncogene, (48), pp. 5449-5457
  • Kitazume, S., Imamaki, R., Ogawa, K., Komi, Y., Futakawa, S., Kojima, S., Hashimoto, Y., Taniguchi, N., 2,6-sialic acid on platelet endothelial cell adhesion molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling (2010) J Biol Chem, 285, pp. 6515-6521
  • Laderach, D.J., Gentilini, L.D., Giribaldi, L., Delgado, V.C., Nugnes, L., Croci, D.O., Al Nakouzi, N., Mazza, O., A unique galectin signature in huma n prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease (2013) Cancer Res, (73), pp. 86-96
  • Langbein, S., Brade, J., Badawi, J.K., Hatzinger, M., Kaltner, H., Lensch, M., Specht, K., Alken, P., Gene-expression signature of adhesion/growth-regulatory tissue lectins (galectins) in transitional cell cancer and its prognostic relevance (2007) Histopathology, 51, pp. 681-690
  • Le, Q.T., Shi, G., Cao, H., Nelson, D.W., Wang, Y., Chen, E.Y., Zhao, S., O'Byrne, K.J., Galectin-1: A link between tumor hypoxia and tumor immune privilege (2005) J Clin Oncol, 23, pp. 8932-8941
  • Loges, S., Mazzone, M., Hohensinner, P., Carmeliet, P., Silencing or fueling metastasis with vegf inhibitors: Antiangiogenesis revisited (2009) Cancer Cell, 15, pp. 167-170
  • Machado, C.M., Andrad, E.L.N., Teixeira, V.R., Costa, F.F., Melo, C.M., Dos Santos, S.N., Nonogaki, S., Camargo, A.A., Galectin-3 disruption impaired tumoral angiogenesis by reducing vegf secretion from tgf?1-induced macrophages (2014) Cancer Med, 3, pp. 201-214
  • Mariñ, O.K., Bones, J., Kattla, J.J., Rudd, P.M., A systematic approach to protein glycosylation analysis: A path through the maze (2010) Nat Chem Biol, 6, pp. 713-723
  • Markowska, A.I., Jefferies, K.C., Panjwani, N., Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells (2011) J Biol Chem, 286, pp. 29913-29921
  • Ma rkowska, A.I., Liu, F.T., Panjwani, N., Galectin-3 is an important mediator of vegf-And bfgf-mediated angiogenic response (2010) J Exp Med, 207, pp. 1981-1993
  • Martínez-Bosch, N., Fernández-Barrena, M.G., Moreno, M., Ortiz-Zapater, E., Munné-Collado, J., Iglesias, M., André, S., Poirier, F., Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and hedgehog signaling activation (2014) Cancer Res, (74), pp. 3512-3524
  • Mathieu, V., De Lassalle, E.M., Toelen, J., Mohr, T., Bellahcene, A., Van Goietsenoven, G., Verschuere, T., De Vleeschouwer, S., Galectin-1 in melanoma biol ogy and related neo-Angiogenesis processes (2012) J Invest Dermatol, 132, pp. 2245-2254
  • Murdoch, C., Muthana, M., Coffelt, S.B., Lewis, C.E., The role of myeloid cells in the promotion of tumour angiogenesis (2008) Nat Rev Cancer, 8, pp. 618-631
  • Nangia-Makker, P., Honjo, Y., Sarvis, R., Akahani, S., Hogan, V., Pienta, K.J., Raz, A., Galectin-3 induces endothelial cell morphogenesis and angiogenesis (2000) Am J Pathol, 156, pp. 899-909
  • Nangia-Makker, P., Wang, Y., Raz, T., Tait, L., Balan, V., Hogan, V., Raz, A., Cleavage of galectin-3 by matrix metalloproteases induces angiogenesis in breast cancer (2010) Int J Cancer, 127, pp. 2530-2541
  • Ohtsubo, K., Marth, J.D., Glycosylation in cellular mechanisms of health and disease (2006) Cell, 126, pp. 855-856
  • Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Viñals, F., Inoue, M., Casanovas, O., Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis (2009) Cancer Cell, 15, pp. 220-231
  • Piccolo, E., Tinari, N., Semera ro, D., Traini, S., Fichera, I., Cumashi, A., La Sorda, R., Lattanzio, R., Lgals3bp, lectin galactoside-binding soluble 3 binding protein, induces vascular endothelial growth factor in huma n breast cancer cells and promotes angiogenesis (2013) J Mol Med (Berl), 91, pp. 83-94
  • Potente, M., Gerhardt, H., Carmeliet, P., Basic and therapeutic aspects of angiogenesis (2011) Cell, 146, pp. 873-887
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer (2012) Immunity, 36, pp. 322-335
  • Shojaei, F., Lee, J.H., Simmons, B.H., Wong, A., Esparza, C.O., Plumle, E.P.A., Feng, J., Christensen, J.G., Hgf/c-met acts as an alternative angiogenic pathway in sunitinib-resistant tumors (2010) Cancer Res, (70), pp. 10090-10100
  • Shojaei, F., Wu, X., Zhong, C., Yu, L., Liang, X.H., Yao, J., Blanchard, D., Van Bruggen, N., Bv8 regulates myeloid-cell-dependent tumour angiogenesis (2007) Nature, 450, pp. 825-831
  • Stanley, P., Guidos, C.J., Regulation of notch signaling during t-And b-cell development by o-fucose glycans (2009) Immunol Rev, 230, pp. 201-215
  • Starossom, S.C., Mascanfroni, I.D., Imitola, J., Cao, L., Raddassi, K., Hernandez, S.F., Bassil, R., Delacour, D., Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration (2012) Immunity, 37, pp. 249-263
  • St. Croix, B.S., Rago, C., Velculescu, V., Traverso, G., Romans, K.E., Montgomery, E., Lal, A., Vogelstein, B., Genes expressed in human tumor endothelium (2000) Science, 289, pp. 1197-1202
  • Thijssen, V.L., Barkan, B., Shoji, H., Aries, I.M., Mathieu, V., Deltour, L., Hackeng, T.M., Poirier, F., Tumor cells secrete galectin-1 to enhance endothelial cell activity (2010) Cancer Res, 70, pp. 6216-6224
  • Thijssen, V.L., Postel, R., Brandwijk, R.J., Dings, R.P., Nesmelova, I., Satijn, S., Verhofstad, N., Bakkers, J., Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy (2006) Proc Natl Acad Sci USA, 103, pp. 15975-15980
  • Thijssen, V.L., Rabinovich, G.A., Griffioen, A.W., Vascular galectins: Regulators of tumor progression and targets for cancer therapy (2013) Cytokine Growth Factor Rev, 10, pp. 1359-6101
  • Toscano, M.A., Bianco, G.A., Larregui J M, I., Croci, D.O., Correale, J., Hernandez, J.D., Zwirner, N.W., Baum, L.G., Differential glycosylation of th1, th2 and th-17 effector cells selectively regulates susceptibility to cell d eath (2007) Nat Immunol, 8, pp. 825-834
  • Van Beijnum, J.R., Dings, R.P., Van Der Linden, E., Zwaans, B.M., Ramaekers, F.C., Mayo, K.H., Griffioen, A.W., Gene expression of tumor angiogenesis dissected: Specific targe ting of colon cancer angiogenic vasculature (2006) Blood, 108, pp. 2339-2348
  • Van Kooyk, Y., Rabinovich, G.A., Protein-glycan interactions in the control of innate and adaptive immune responses (2008) Nat Immunol, 9, pp. 593-601
  • Van Wijk, X.M., Thijssen, V.L., Lawrence, R., Van Den Broek, S.A., Dona, M., Naidu, N., Oosterhof, A., Khaled, Y., Interfering with udp-glcnac metabolism and heparan sulfate expression using a sugar analogue reduces angiogenesis (2013) ACS Chem Biol, (8), pp. 2331-2338
  • Varki, A., Kannagi, R., Toole, B.P., Glycosylation changes in cancer (2009) Essentials of Glycobiology, , In: Varki A, Cummings RD, Esko JD, Fr eeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Chapter 44
  • Verschuere, T., Toelen, J., Maes, W., Poirier, F., Boon, L., Tousse yn, T., Mathivet, T., Kiss, R., Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity Int J Cancer, 2014 (134), pp. 873-884
  • Willhauck-Fleckenstein, M., Moehler, T.M., Merling, A., Pusunc, S., Goldschmidt, H., Schwartz-Albiez, R., Transcriptional regulation of the vascular endothelial glycome by angiogenic and inflammatory signalling (2010) Angiogenesis, 13, pp. 25-42
  • Wu, M.H., Ying, N.W., Hong, T.M., Chiang, W.F., Lin, Y.T., Chen, Y.L., Galectin-1 induces vascular permeability through the neuropilin-1/vascular endothelial growth factor receptor-1 complex (2014) Angiogenesis, , Advance Access published April 10 2014
  • Xu, D., Fuster, M.M., Lawrence, R., Esko, J.D., Heparan sulfate regulates vegf165-And vegf121-mediated vascular hyperpermeability (2011) J Biol Chem, 286, pp. 737-745
  • Zhao, X.Y., Zhao, K.W., Jiang, Y., Zhao, M., Chen, G.Q., Synergistic induction of galectin-1 by ccaat/enhancer binding protein alpha and hypoxia-inducible factor 1alpha and its role in differentiation of acute mye loid leukemic cells J Biol Chem, 2011 (286), pp. 36808-36819
  • Zucchetti, M., Bonezzi, K., Frapolli, R., Sala, F., Borsotti, P., Zangarini, M., Cvitkovic, E., Giavazzi, R., Ph armacokinetics and antineoplastic activity of galectin-1-targeting otx008 in combination with sunitinib (2013) Cancer Chemother Pharmacol, 72, pp. 879-887

Citas:

---------- APA ----------
Croci, D.O., Cerliani, J.P., Pinto, N.A., GMorosi, L. & Rabinovich, G.A. (2014) . Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment. Glycobiology, 24(12), 1283-1290.
http://dx.doi.org/10.1093/glycob/cwu083
---------- CHICAGO ----------
Croci, D.O., Cerliani, J.P., Pinto, N.A., GMorosi, L., Rabinovich, G.A. "Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment" . Glycobiology 24, no. 12 (2014) : 1283-1290.
http://dx.doi.org/10.1093/glycob/cwu083
---------- MLA ----------
Croci, D.O., Cerliani, J.P., Pinto, N.A., GMorosi, L., Rabinovich, G.A. "Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment" . Glycobiology, vol. 24, no. 12, 2014, pp. 1283-1290.
http://dx.doi.org/10.1093/glycob/cwu083
---------- VANCOUVER ----------
Croci, D.O., Cerliani, J.P., Pinto, N.A., GMorosi, L., Rabinovich, G.A. Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment. Glycobiology. 2014;24(12):1283-1290.
http://dx.doi.org/10.1093/glycob/cwu083