Artículo

Gauto, D.F.; Petruk, A.A.; Modenutti, C.P.; Blanco, J.I.; Di Lella, S.; Martí, M.A. "Solvent structure improves docking prediction in lectin-carbohydrate complexes" (2013) Glycobiology. 23(2):241-258
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Recognition and complex formation between proteins and carbohydrates is a key issue in many important biological processes. Determination of the three-dimensional structure of such complexes is thus most relevant, but particularly challenging because of their usually low binding affinity. In silico docking methods have a long-standing tradition in predicting protein-ligand complexes, and allow a potentially fast exploration of a number of possible protein-carbohydrate complex structures. However, determining which of these predicted complexes represents the correct structure is not always straightforward.In this work, we present a modification of the scoring function provided by AutoDock4, a widely used docking software, on the basis of analysis of the solvent structure adjacent to the protein surface, as derived from molecular dynamics simulations, that allows the definition and characterization of regions with higher water occupancy than the bulk solvent, called water sites. They mimic the interaction held between the carbohydrate-OH groups and the protein. We used this information for an improved docking method in relation to its capacity to correctly predict the protein-carbohydrate complexes for a number of tested proteins, whose ligands range in size from mono-to tetrasaccharide. Our results show that the presented method significantly improves the docking predictions. The resulting solvent-structure-biased docking protocol, therefore, appears as a powerful tool for the design and optimization of development of glycomimetic drugs, while providing new insights into protein-carbohydrate interactions. Moreover, the achieved improvement also underscores the relevance of the solvent structure to the protein carbohydrate recognition process. © 2012 The Author.

Registro:

Documento: Artículo
Título:Solvent structure improves docking prediction in lectin-carbohydrate complexes
Autor:Gauto, D.F.; Petruk, A.A.; Modenutti, C.P.; Blanco, J.I.; Di Lella, S.; Martí, M.A.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, Argentina
Instituto de Química de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET, Argentina
Instituto de Química Biológica-Ciencias Exactas y Naturales UBA/CONICET, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
Palabras clave:AutoDock4; carbohydrate; complex; docking; galectins; hydration site; lectin; proteins; saccharide; solvent structure; water site; carbohydrate; lectin; monosaccharide; solvent; tetrasaccharide; article; chemical modification; chemical structure; complex formation; computer program; molecular docking; molecular dynamics; prediction; priority journal; protein carbohydrate interaction; simulation; surface property; Binding Sites; Carbohydrates; Galectins; Ligands; Molecular Docking Simulation; Molecular Dynamics Simulation; Protein Binding; Protein Conformation; Protein Structure, Tertiary; Proteins; Software; Solvents; Water
Año:2013
Volumen:23
Número:2
Página de inicio:241
Página de fin:258
DOI: http://dx.doi.org/10.1093/glycob/cws147
Título revista:Glycobiology
Título revista abreviado:Glycobiology
ISSN:09596658
CODEN:GLYCE
CAS:Carbohydrates; Galectins; Ligands; Proteins; Solvents; Water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09596658_v23_n2_p241_Gauto

Referencias:

  • Abel, R., Young, T., Farid, R., Berne, B.J., Friesner, R.A., Role of the activesite solvent in the thermodynamics of factor xa ligand binding (2008) J Am Chem Soc, 130, pp. 2817-2831
  • Agostino, M., Jene, C., Boyle, T., Ramsland, P.A., Yuriev, E., Molecular docking of carbohydrate ligands to antibodies: Structural validation against crystal structures (2009) J Chem Inf Model, 49, pp. 2749-2760
  • Agostino, M., Sandrin, M.S., Thompson, P.E., Yuriev, E., Ramsland, P.A., Identification of preferred carbohydrate binding modes in xenoreactive antibodies by combining conformational filters and binding site maps (2010) Glycobiology, 20, pp. 724-735
  • Agostino, M., Yuriev, E., Ramsland, P.A., A computational approach for exploring carbohydrate recognition by lectins in innate immunity (2011) Front Immunol, 2, p. 23
  • Ahmad, N., Gabius, H.J., Sabesan, S., Oscarson, S., Brewer, C.F., Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3 (2004) Glycobiology, 14, pp. 817-825
  • Amzel, L.M., Structure-based drug design (1998) Curr Opin Biotechnol, 9, pp. 366-369
  • Balzarini, J., Targeting the glycans of glycoproteins: A novel paradigm for antiviral therapy (2007) Nat Rev Microbiol, 5, pp. 583-597
  • Banerji, S., Wright, A.J., Noble, M., Mahoney, D.J., Campbell, I.D., Day, A.J., Jackson, D.G., Structures of the cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction (2007) Nat Struct Mol Biol, 14, pp. 234-239
  • Barril, X., Javier Luque, F., Molecular simulation methods in drug discovery: A prospective outlook (2012) J Comput-Aided Mol des, 26, pp. 81-86
  • Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) J Chem Phys, 81, pp. 3684-3690
  • Boraston, A.B., Ficko-Blean, E., Healey, M., Carbohydrate recognition by a large sialidase toxin from clostridium perfringens† (2007) Biochemistry, 46, pp. 11352-11360
  • Brooijmans, N., Kuntz, I.D., Molecular recognition and docking algorithms (2003) Annu Rev Biophys Biomol Struct, 32, pp. 335-373
  • Case, D.A., Cheatham Iii., T.E., Darden, T., Gohlke, H., Luo, R., Merz Jr., K.M., Onufriev, A., Woods, R.J., The amber biomolecular simulation programs (2005) J Comput Chem, 26, pp. 1668-1688
  • Crocker, P.R., Paulson, J.C., Varki, A., Siglecs and their roles in the immune system (2007) Nat Rev Immunol, 7, pp. 255-266
  • Crouch, E., McDonald, B., Smith, K., Cafarella, T., Seaton, B., Head, J., Contributions of phenylalanine 335 to ligand recognition by human surfactant protein d: Ring interactions with sp-d ligands (2006) J Biol Chem, 281, pp. 18008-18014
  • Dam, T.K., Brewer, C.F., Lectins as pattern recognition molecules: The effects of epitope density in innate immunity (2010) Glycobiology, 20, pp. 270-279
  • De Beer, S.B., Vermeulen, N.P., Oostenbrink, C., The role of water molecules in computational drug design (2010) Curr Top Med Chem, 10, pp. 55-66
  • Di Lella, S., Marti, M.A., Alvarez, R.M., Estrin, D.A., Ricci, J.C., Characterization of the galectin-1 carbohydrate recognition domain in terms of solvent occupancy (2007) J Phys Chem B, 111, pp. 7360-7366
  • Di Lella, S., Sundblad, V., Cerliani, J.P., Guardia, C.M., Estrin, D.A., Vasta, G.R., Rabinovich, G.A., When galectins recognize glycans: From biochemistry to physiology and back again (2011) Biochemistry, 50, pp. 7842-7857
  • Drews, J., Drug discovery: A historical perspective (2000) Science, 287, pp. 1960-1964
  • Echeverria, I., Amzel, L.M., Disaccharide binding to galectin-1: Free energy calculations and molecular recognition mechanism (2011) Biophys J, 100, pp. 2283-2292
  • Englebienne, P., Moitessier, N., Docking ligands into flexible and solvated macromolecules. 5. Force-field-based prediction of binding affinities of ligands to proteins (2009) J Chem Inf Model, 49, pp. 2564-2571
  • Ernst, B., Magnani, J.L., From carbohydrate leads to glycomimetic drugs (2009) Nat Rev Drug Discovery, 8, pp. 661-677
  • Fadda, E., Woods, R.J., Molecular simulations of carbohydrates and protein-carbohydrate interactions: Motivation, issues and prospects (2010) Drug Discov Today, 15, pp. 596-609
  • Feinberg, H., Mitchell, D.A., Drickamer, K., Weis, W.I., Structural basis for selective recognition of oligosaccharides by dc-sign and dc-signr (2001) Science, 294, pp. 2163-2166
  • Feinberg, H., Taylor, M.E., Razi, N., McBride, R., Knirel, Y.A., Graham, S.A., Drickamer, K., Weis, W.I., Structural basis for langerin recognition of diverse pathogen and mammalian glycans through a single binding site (2011) J Mol Biol, 405, pp. 1027-1039
  • Feliu, E., Oliva, B., How different from random are docking predictions when ranked by scoring functions? (2010) Proteins, 78, pp. 3376-3385
  • Feng, L., Sun, H., Zhang, Y., Li, D.F., Wang, D.C., Structural insights into the recognition mechanism between an antitumor galectin AAL and the Thomsen-Friedenreich antigen (2010) FASEB J, 24, pp. 3861-3868
  • Frank, M., Schloissnig, S., Bioinformatics and molecular modeling in glycobiology (2010) Cell Mol Life Sci, 67, pp. 2749-2772
  • Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Perry, J.K., Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy (2004) J Med Chem, 47, pp. 1739-1749
  • Gauto, D.F., Di Lella, S., Estrin, D.A., Monaco, H.L., Marti, M.A., Structural basis for ligand recognition in a mushroom lectin: Solvent structure as specificity predictor (2011) Carbohydr Res, 346, pp. 939-948
  • Gauto, D.F., Di Lella, S., Guardia, C.M., Estrin, D.A., Marti, M.A., Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy (2009) J Phys Chem B, 113, pp. 8717-8724
  • Goodsell, D.S., Morris, G.M., Olson, A.J., Automated docking of flexible ligands: Applications of AutoDock (1996) J Mol Recognit, 9, pp. 1-5
  • Guardia, C.M., Gauto, D.F., Di Lella, S., Rabinovich, G.A., Marti, M.A., Estrin, D.A., An integrated computational analysis of the structure, dynamics, and ligand binding interactions of the human galectin network (2011) J Chem Inf Model, 51, pp. 1918-1930
  • Hirabayashi, J., Lectin-based structural glycomics: Glycoproteomics and glycan profiling (2004) Glycoconj J, 21, pp. 35-40
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple amber force fields and development of improved protein backbone parameters (2006) Proteins, 65, pp. 712-725
  • Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S., A semiempirical free energy force field with charge-based desolvation (2007) J Comput Chem, 28, pp. 1145-1152
  • Kadirvelraj, R., Foley, B.L., Dyekjaer, J.D., Woods, R.J., Involvement of water in carbohydrate-protein binding: Concanavalin a revisited (2008) J Am Chem Soc, 130, pp. 16933-16942
  • Kerzmann, A., Fuhrmann, J., Kohlbacher, O., Neumann, D., Balldock/slick: A new method for protein-carbohydrate docking (2008) J Chem Inf Model, 48, pp. 1616-1625
  • Kerzmann, A., Neumann, D., Kohlbacher, O., Slick-Scoring and energy functions for protein-carbohydrate interactions (2006) J Chem Inf Model, 46, pp. 1635-1642
  • Lazaridis, T., Inhomogeneous fluid approach to solvation thermodynamics. 1. Theory (1998) J Phys Chem B, 102, pp. 3531-3541
  • Lazaridis, T., Inhomogeneous fluid approach to solvation thermodynamics. 2. Applications to simple fluids (1998) J Phys Chem B, 102, pp. 3542-3550
  • Leach, A.R., Shoichet, B.K., Peishoff, C.E., Prediction of protein-ligand interactions. Docking and scoring: Successes and gaps (2006) J Med Chem, 49, pp. 5851-5855
  • Leffler, H., Carlsson, S., Hedlund, M., Qian, Y., Poirier, F., Introduction to galectins (2004) Glycoconj J, 19, pp. 433-440
  • Li, L., Chen, R., Weng, Z., Rdock: Refinement of rigid-body protein docking predictions (2003) Proteins, 53, pp. 693-707
  • Li, Z., Lazaridis, T., Thermodynamic contributions of the ordered water molecule in hiv-1 protease (2003) J Am Chem Soc, 125, pp. 6636-6637
  • Li, Z., Lazaridis, T., The effect of water displacement on binding thermodynamics: Concanavalin a (2005) J Phys Chem B, 109, pp. 662-670
  • Loging, W., Rodriguez-Esteban, R., Hill, J., Freeman, T., Miglietta, J., Cheminformatic/bioinformatic analysis of large corporate databases: Application to drug repurposing (2012) Drug Discov Today Ther Strateg, 8, pp. 109-116
  • Loris, R., Maes, D., Poortmans, F., Wyns, L., Bouckaert, J., A structure of the complex between concanavalin a and methyl-3,6-di-o-(alpha-d-mannopyranosyl)-alpha-d-mannopyranoside reveals two binding modes (1996) J Biol Chem, 271, pp. 30614-30618
  • Luccarelli, J., Michel, J., Tirado-Rives, J., Jorgensen, W.L., Effects of water placement on predictions of binding affinities for p38α map kinase inhibitors (2010) J Chem Theory Comput, 6, pp. 3850-3856
  • Michel, J., Tirado-Rives, J., Jorgensen, W.L., Energetics of displacing water molecules from protein binding sites: Consequences for ligand optimization (2009) J Am Chem Soc, 131, pp. 15403-15411
  • Michel, J., Tirado-Rives, J., Jorgensen, W.L., Prediction of the water content in protein binding sites (2009) J Phys Chem B, 113, pp. 13337-13346
  • Mishra, S.K., Adam, J., Wimmerova, M., Koca, J., In silico mutagenesis and docking study of ralstonia solanacearum rsl lectin: Performance of docking software to predict saccharide binding (2012) J Chem Inf Model, 52, pp. 1250-1261
  • Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J., Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function (1998) J Comput Chem, 19, pp. 1639-1662
  • Morris, G.M., Goodsell, D.S., Huey, R., Olson, A.J., Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4 (1996) J Comput Aided Mol des, 10, pp. 293-304
  • Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and autodocktools4: Automated docking with selective receptor flexibility (2009) J Comput Chem, 30, pp. 2785-2791
  • Moustakas, D.T., Lang, P.T., Pegg, S., Pettersen, E., Kuntz, I.D., Brooijmans, N., Rizzo, R.C., Development and validation of a modular, extensible docking program: Dock 5 (2006) J Comput Aided Mol des, 20, pp. 601-619
  • Nurisso, A., Kozmon, S., Imberty, A., Comparison of docking methods for binding in calcium-dependent lectins and prediction of the carbohydrate binding mode to sea cucumber lectin cel-iii (2008) Mol Simul, 34, pp. 469-479
  • Powlesland, A.S., Quintero-Martinez, A., Lim, P.G., Pipirou, Z., Taylor, M.E., Drickamer, K., Engineered carbohydrate-recognition domains for glycoproteomic analysis of cell surface glycosylation and ligands for glycan-binding receptors (2010) Methods Enzymol, 480, pp. 165-179
  • Rabinovich, G.A., Galectin-1 as a potential cancer target (2005) Br J Cancer, 92, pp. 1188-1192
  • Saraboji, K., Hakansson, M., Genheden, S., Diehl, C., Qvist, J., Weininger, U., Nilsson, U.J., Akke, M., The carbohydratebinding site in galectin-3 is preorganized to recognize a sugarlike framework of oxygens: Ultra-high-resolution structures and water dynamics (2012) Biochemistry, 51, pp. 296-306
  • Seco, J., Luque, F.J., Barril, X., Binding site detection and druggability index from first principles (2009) J Med Chem, 52, pp. 2363-2371
  • Seetharaman, J., Kanigsberg, A., Slaaby, R., Leffler, H., Barondes, S.H., Rini, J.M., X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1 - A resolution (1998) J Biol Chem, 273, pp. 13047-13052
  • Shoichet, B.K., McGovern, S.L., Wei, B., Irwin, J.J., Lead discovery using molecular docking (2002) Curr Opin Chem Biol, 6, pp. 439-446
  • Taylor, M.E., Drickamer, K., Structural insights into what glycan arrays tell us about how glycan-binding proteins interact with their ligands (2009) Glycobiology, 19, pp. 1155-1162
  • Taylor, R.D., Jewsbury, P.J., Essex, J.W., A review of protein-small molecule docking methods (2002) J Comput Aided Mol des, 16, pp. 151-166
  • Trott, O., Olson, A.J., Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading (2010) J Comput Chem, 31, pp. 455-461
  • Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G., Marth, J., (1999) Essentials of Glycobiology
  • Von Der Lieth, C.W., Freire, A.A., Blank, D., Campbell, M.P., Ceroni, A., Damerell, D.R., Dell, A., Fogh, R., Eurocarbdb: An open-access platform for glycoinformatics (2011) Glycobiology, 21, pp. 493-502
  • Von Schantz, L., Hakansson, M., Logan, D.T., Walse, B., Osterlin, J., Nordberg-Karlsson, E., Ohlin, M., Structural basis for carbohydratebinding specificity - A comparative assessment of two engineered carbohydrate-binding modules (2012) Glycobiology, 22, pp. 948-961
  • Woods, R.J., Tessier, M.B., Computational glycoscience: Characterizing the spatial and temporal properties of glycans and glycan-protein complexes (2010) Curr Opin Struct Biol, 20, pp. 575-583
  • Young, T., Abel, R., Kim, B., Berne, B.J., Friesner, R.A., Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding (2007) Proc Natl Acad Sci USA, 104, pp. 808-813

Citas:

---------- APA ----------
Gauto, D.F., Petruk, A.A., Modenutti, C.P., Blanco, J.I., Di Lella, S. & Martí, M.A. (2013) . Solvent structure improves docking prediction in lectin-carbohydrate complexes. Glycobiology, 23(2), 241-258.
http://dx.doi.org/10.1093/glycob/cws147
---------- CHICAGO ----------
Gauto, D.F., Petruk, A.A., Modenutti, C.P., Blanco, J.I., Di Lella, S., Martí, M.A. "Solvent structure improves docking prediction in lectin-carbohydrate complexes" . Glycobiology 23, no. 2 (2013) : 241-258.
http://dx.doi.org/10.1093/glycob/cws147
---------- MLA ----------
Gauto, D.F., Petruk, A.A., Modenutti, C.P., Blanco, J.I., Di Lella, S., Martí, M.A. "Solvent structure improves docking prediction in lectin-carbohydrate complexes" . Glycobiology, vol. 23, no. 2, 2013, pp. 241-258.
http://dx.doi.org/10.1093/glycob/cws147
---------- VANCOUVER ----------
Gauto, D.F., Petruk, A.A., Modenutti, C.P., Blanco, J.I., Di Lella, S., Martí, M.A. Solvent structure improves docking prediction in lectin-carbohydrate complexes. Glycobiology. 2013;23(2):241-258.
http://dx.doi.org/10.1093/glycob/cws147