Artículo

Ferreiro, D.U.; Komives, E.A.; Wolynes, P.G. "Frustration, function and folding" (2018) Current Opinion in Structural Biology. 48:68-73
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Natural protein molecules are exceptional polymers. Encoded in apparently random strings of amino-acids, these objects perform clear physical tasks that are rare to find by simple chance. Accurate folding, specific binding, powerful catalysis, are examples of basic chemical activities that the great majority of polypeptides do not display, and are thought to be the outcome of the natural history of proteins. Function, a concept genuine to Biology, is at the core of evolution and often conflicts with the physical constraints. Locating the frustration between discrepant goals in a recurrent system leads to fundamental insights about the chances and necessities that shape the encoding of biological information. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:Frustration, function and folding
Autor:Ferreiro, D.U.; Komives, E.A.; Wolynes, P.G.
Filiación:Protein Physiology Lab, FCEyN-Universidad de Buenos Aires, IQUIBICEN/CONICET, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, United States
Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
Department of Chemistry, Rice University, Houston, TX, United States
Department of Physics, Rice University, Houston, TX, United States
Department of Biosciences, Rice University, Houston, TX, United States
Palabras clave:I kappa B; immunoglobulin enhancer binding protein; polypeptide; amino acid; protein; protein binding; amino acid sequence; catalysis; human; priority journal; protein binding; protein conformation; protein folding; protein function; protein interaction; protein localization; protein stability; protein structure; Review; animal; biocatalysis; chemistry; kinetics; molecular dynamics; molecular evolution; physiology; protein folding; structure activity relation; thermodynamics; Amino Acid Sequence; Amino Acids; Animals; Biocatalysis; Evolution, Molecular; Humans; Kinetics; Molecular Dynamics Simulation; Protein Binding; Protein Folding; Proteins; Structure-Activity Relationship; Thermodynamics
Año:2018
Volumen:48
Página de inicio:68
Página de fin:73
DOI: http://dx.doi.org/10.1016/j.sbi.2017.09.006
Título revista:Current Opinion in Structural Biology
Título revista abreviado:Curr. Opin. Struct. Biol.
ISSN:0959440X
CODEN:COSBE
CAS:amino acid, 65072-01-7; protein, 67254-75-5; Amino Acids; Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0959440X_v48_n_p68_Ferreiro

Referencias:

  • Vannimenus, J., Toulouse, G., Theory of the frustration effect. II. Ising spins on a square lattice (1977) J Phys C Solid State Phys, 10, p. L537. , http://stacks.iop.org/0022-3719/10/i=18/a=008
  • Bryngelson, J.D., Wolynes, P.G., Spin glasses and the statistical mechanics of protein folding (1987) Proc Natl Acad Sci U S A, 84, pp. 7524-7528
  • Wolynes, P.G., Evolution, energy landscapes and the paradoxes of protein folding (2015) Biochimie, 119, pp. 218-230
  • Wei, G., Xi, W., Nussinov, R., Ma, B., Protein ensembles: how does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell (2016) Chem Rev, 116, pp. 6516-6551
  • Tzul, F.O., Vasilchuk, D., Makhatadze, G.I., Evidence for the principle of minimal frustration in the evolution of protein folding landscapes (2017) Proc Natl Acad Sci U S A, 114, pp. E1627-E1632
  • Lubchenko, V., Competing interactions create functionality through frustration (2008) Proc Natl Acad Sci U S A, 105, pp. 10635-10636
  • Parmeggiani, F., Huang, P.-S., Vorobiev, S., Xiao, R., Park, K., Caprari, S., Su, M., Baker, D., A general computational approach for repeat protein design (2015) J Mol Biol, 427, pp. 563-575
  • Woolfson, D.N., Bartlett, G.J., Burton, A.J., Heal, J.W., Niitsu, A., Thomson, A.R., Wood, C.W., De novo protein design: how do we expand into the universe of possible protein structures? (2015) Curr Opin Struct Biol, 33, pp. 16-26
  • Huang, P.-S., Boyken, S.E., Baker, D., The coming of age of de novo protein design (2016) Nature, 537, pp. 320-327
  • Schafer, N.P., Kim, B.L., Zheng, W., Wolynes, P.G., Learning to fold proteins using energy landscape theory (2014) Isr J Chem, 54, pp. 1311-1337
  • Capelli, R., Paissoni, C., Sormanni, P., Tiana, G., Iterative derivation of effective potentials to sample the conformational space of proteins at atomistic scale (2014) J Chem Phys, 140, p. 195101
  • Gopi, S., Singh, A., Suresh, S., Paul, S., Ranu, S., Naganathan, A.N., Toward a quantitative description of microscopic pathway heterogeneity in protein folding (2017) Phys Chem Chem Phys, 19, pp. 20891-20903
  • Ferreiro, D.U., Hegler, J.A., Komives, E.A., Wolynes, P.G., Localizing frustration in native proteins and protein assemblies (2007) Proc Natl Acad Sci U S A, 104, pp. 19819-19824
  • Parra, R.G., Schafer, N.P., Radusky, L.G., Tsai, M.-Y., Guzovsky, A.B., Wolynes, P.G., Ferreiro, D.U., Protein frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics (2016) Nucleic Acids Res, 44, pp. W356-60. , An open web server tool to localize energetic frustration in proteins
  • Ferreiro, D.U., Hegler, J.A., Komives, E.A., Wolynes, P.G., On the role of frustration in the energy landscapes of allosteric proteins (2011) Proc Natl Acad Sci U S A, 108, pp. 3499-3503
  • Li, W., Wolynes, P.G., Takada, S., Frustration, specific sequence dependence, and nonlinearity in large-amplitude fluctuations of allosteric proteins (2011) Proc Natl Acad Sci U S A, 108, pp. 3504-3509
  • Fuglestad, B., Gasper, P.M., McCammon, J.A., Markwick, P.R.L., Komives, E.A., Correlated motions and residual frustration in thrombin (2013) J Phys Chem B, 117, pp. 12857-12863
  • Munshi, S., Naganathan, A.N., Imprints of function on the folding landscape: functional role for an intermediate in a conserved eukaryotic binding protein (2015) Phys Chem Chem Phys, 17, pp. 11042-11052
  • de Souza, V.K., Stevenson, J.D., Niblett, S.P., Farrell, J.D., Wales, D.J., Defining and quantifying frustration in the energy landscape: applications to atomic and molecular clusters, biomolecules, jammed and glassy systems (2017) J Chem Phys, 146, p. 124103
  • Zheng, W., Schafer, N.P., Wolynes, P.G., Frustration in the energy landscapes of multidomain protein misfolding (2013) Proc Natl Acad Sci U S A, 110, pp. 1680-1685
  • Matsushita, K., Kikuchi, M., Frustration-induced protein intrinsic disorder (2013) J Chem Phys, 138, p. 105101
  • Ferreiro, D.U., Komives, E.A., Wolynes, P.G., Frustration in biomolecules (2014) Q Rev Biophys, 47, pp. 285-363
  • Giri Rao, V.V.H., Gosavi, S., Using the folding landscapes of proteins to understand protein function (2016) Curr Opin Struct Biol, 36, pp. 67-74
  • Gosavi, S., Whitford, P.C., Jennings, P.A., Onuchic, J.N., Extracting function from a beta-trefoil folding motif (2008) Proc Natl Acad Sci U S A, 105, pp. 10384-10389
  • Houwman, J.A., van Mierlo, C.P.M., Folding of proteins with a flavodoxin-like architecture (2017) FEBS J
  • Nobrega, R.P., Arora, K., Kathuria, S.V., Graceffa, R., Barrea, R.A., Guo, L., Chakravarthy, S., Matthews, C.R., Modulation of frustration in folding by sequence permutation (2014) Proc Natl Acad Sci U S A, 111, pp. 10562-10567
  • Di Silvio, E., Brunori, M., Gianni, S., Frustration sculpts the early stages of protein folding (2015) Angew Chem Int Ed Engl, 54, pp. 10867-10869. , Kinetic characterization of site-directed mutants of two related proteins showing that the early stages of folding are dominated by local frustration
  • Oakley, M.T., Wales, D.J., Johnston, R.L., Energy landscape and global optimization for a frustrated model protein (2011) J Phys Chem B, 115, pp. 11525-11529
  • Clementi, C., Plotkin, S.S., The effects of nonnative interactions on protein folding rates: theory and simulation (2004) Protein Sci, 13, pp. 1750-1766
  • Contessoto, V.G., Lima, D.T., Oliveira, R.J., Bruni, A.T., Chahine, J., Leite, V.B.P., Analyzing the effect of homogeneous frustration in protein folding (2013) Proteins, 81, pp. 1727-1737
  • Zhuravlev, P.I., Papoian, G.A., Functional versus folding landscapes: the same yet different (2010) Curr Opin Struct Biol, 20, pp. 16-22
  • Cashman, D.J., Zhu, T., Simmerman, R.F., Scott, C., Bruce, B.D., Baudry, J., Molecular interactions between photosystem I and ferredoxin: an integrated energy frustration and experimental model (2014) J Mol Recogn, 27, pp. 597-608
  • Tripathi, S., Wang, Q., Zhang, P., Hoffman, L., Waxham, M.N., Cheung, M.S., Conformational frustration in calmodulin-target recognition (2015) J Mol Recogn, 28, pp. 74-86. , Molecular origin of the frustration caused in binding to CaM, determining the kinetics of the recognition process
  • Tan, C., Li, W., Wang, W., Localized frustration and binding-induced conformational change in recognition of 5S RNA by TFIIIA zinc finger (2013) J Phys Chem B, 117, pp. 15917-15925
  • Potoyan, D.A., Zheng, W., Komives, E.A., Wolynes, P.G., Molecular stripping in the NF-κB/IκB/DNA genetic regulatory network (2016) Proc Natl Acad Sci U S A, 113, pp. 110-115
  • Potoyan, D.A., Zheng, W., Ferreiro, D.U., Wolynes, P.G., Komives, E.A., Pest control of molecular stripping of NFκB from DNA transcription sites (2016) J Phys Chem B, 120, pp. 8532-8538. , Explores the functional motions of a transcription factor and its various complexes, showing that the function of the genetic switch is realized via an allosteric mechanism modulated by local frustration
  • Dembinski, H.E., Wismer, K., Vargas, J.D., Suryawanshi, G.W., Kern, N., Kroon, G., Dyson, H.J., Komives, E.A., Functional importance of stripping in NFκB signaling revealed by a stripping-impaired IκBA mutant (2017) Proc Natl Acad Sci U S A, 114, pp. 1916-1921
  • Parra, R.G., Espada, R., Verstraete, N., Ferreiro, D.U., Structural and energetic characterization of the ankyrin repeat protein family (2015) PLoS Comput Biol, 11, p. e1004659
  • Espada, R., Ferreiro, D.U., Parra, R.G., The design of repeat proteins: stability conflicts with functionality (2017) Biochem Mol Biol J, 3
  • Kumar, S., Clarke, D., Gerstein, M., Localized structural frustration for evaluating the impact of sequence variants (2016) Nucleic Acids Res, 44, pp. 10062-10073. , Large scale analysis of local frustration effect in genomic variants associated to decease
  • Floquet, N., Costa, M.G.S., Batista, P.R., Renault, P., Bisch, P.M., Raussin, F., Martinez, J., Perahia, D., Conformational equilibrium of CDK/cyclin complexes by molecular dynamics with excited normal modes (2015) Biophys J, 109, pp. 1179-1189
  • Kitao, A., Takemura, K., High anisotropy and frustration: the keys to regulating protein function efficiently in crowded environments (2017) Curr Opin Struct Biol, 42, pp. 50-58
  • Roman, E.A., Faraj, S.E., Gallo, M., Salvay, A.G., Ferreiro, D.U., Santos, J., Protein stability and dynamics modulation: the case of human frataxin (2012) PLoS ONE, 7, p. e45743
  • Gianni, S., Camilloni, C., Giri, R., Toto, A., Bonetti, D., Morrone, A., Sormanni, P., Vendruscolo, M., Understanding the frustration arising from the competition between function, misfolding, and aggregation in a globular protein (2014) Proc Natl Acad Sci U S A, 111, pp. 14141-14146
  • Wiederstein, M., Sippl, M.J., Protein sequence randomization: efficient estimation of protein stability using knowledge-based potentials (2005) J Mol Biol, 345, pp. 1199-1212
  • Boucher, J.I., Bolon, D.N.A., Tawfik, D.S., Quantifying and understanding the fitness effects of protein mutations: laboratory versus nature (2016) Protein Sci, 25, pp. 1219-1226
  • Mayr, E., Cause and effect in biology (1961) Science, 134, pp. 1501-1506
  • Monod, J., Le hasard et la nécessité: essai sur la philosophie naturelle de la biologie moderne (1973), Éditions du Seuil; Kauffman, S.A., Prolegomenon to patterns in evolution (2014) Biosystems, 123, pp. 3-8
  • Simondon, G., L'individuation: à la lumière des notions de forme et d'information (2005), Editions Jérôme Millon

Citas:

---------- APA ----------
Ferreiro, D.U., Komives, E.A. & Wolynes, P.G. (2018) . Frustration, function and folding. Current Opinion in Structural Biology, 48, 68-73.
http://dx.doi.org/10.1016/j.sbi.2017.09.006
---------- CHICAGO ----------
Ferreiro, D.U., Komives, E.A., Wolynes, P.G. "Frustration, function and folding" . Current Opinion in Structural Biology 48 (2018) : 68-73.
http://dx.doi.org/10.1016/j.sbi.2017.09.006
---------- MLA ----------
Ferreiro, D.U., Komives, E.A., Wolynes, P.G. "Frustration, function and folding" . Current Opinion in Structural Biology, vol. 48, 2018, pp. 68-73.
http://dx.doi.org/10.1016/j.sbi.2017.09.006
---------- VANCOUVER ----------
Ferreiro, D.U., Komives, E.A., Wolynes, P.G. Frustration, function and folding. Curr. Opin. Struct. Biol. 2018;48:68-73.
http://dx.doi.org/10.1016/j.sbi.2017.09.006