Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functional output of a mimic depends on the motif and domain repertoire of the pathogen protein. Regulatory evolution mediated by linear motifs can be understood by measuring evolutionary rates, quantifying positive and negative selection and performing phylogenetic reconstructions of linear motif natural history. Convergent evolution of linear motif mimics is widespread among unrelated proteins from viral, prokaryotic and eukaryotic pathogens and can also take place within individual protein phylogenies. Statistics, biochemistry and laboratory models of infection link pathogen linear motifs to phenotypic traits such as tropism, virulence and oncogenicity. In vitro evolution experiments and analysis of natural sequences suggest that changes in linear motif composition underlie pathogen adaptation to a changing environment. © 2015 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions
Autor:Chemes, L.B.; de Prat-Gay, G.; Sánchez, I.E.
Filiación:Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, 1405, Argentina
Protein Physiology Laboratory, Universidad de Buenos Aires, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales and IQUIBICEN-CONICET, Buenos Aires, Argentina
Palabras clave:retinoblastoma binding protein; retinoblastoma protein; protein; adaptive evolution; binding affinity; coevolution; convergent evolution; evolutionary rate; genetic conservation; habitat selection; Helicobacter; host pathogen interaction; host resistance; human; Human adenovirus 5; Human papillomavirus type 16; Leptospira; linear motif mimicry; Metapneumovirus; molecular evolution; molecular mimicry; motif switch; negative purifying selection; nonhuman; phylogeny; physical chemistry; positive selection; priority journal; protein assembly; protein conformation; protein expression; protein function; protein linear motif; protein motif; protein protein interaction; protein secondary structure; protein structure, function and variability; purifying selection; Pyrenophora; regular expression; regulatory evolution; Review; sequence alignment; sequence analysis; Simian virus 40; animal; chemical structure; chemistry; genetics; metabolism; protein motif; protein protein interaction; Eukaryota; Prokaryota; Amino Acid Motifs; Animals; Evolution, Molecular; Host-Pathogen Interactions; Humans; Models, Molecular; Molecular Mimicry; Protein Conformation; Protein Interaction Maps; Proteins
Año:2015
Volumen:32
Página de inicio:91
Página de fin:101
DOI: http://dx.doi.org/10.1016/j.sbi.2015.03.004
Título revista:Current Opinion in Structural Biology
Título revista abreviado:Curr. Opin. Struct. Biol.
ISSN:0959440X
CODEN:COSBE
CAS:protein, 67254-75-5; Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0959440X_v32_n_p91_Chemes

Referencias:

  • Dinkel, H., Van Roey, K., Michael, S., Davey, N.E., Weatheritt, R.J., Born, D., Speck, T., Kuban, M., The eukaryotic linear motif resource ELM: 10 years and counting (2014) Nucleic Acids Res, 42, pp. D259-D266
  • Van Roey, K., Uyar, B., Weatheritt, R.J., Dinkel, H., Seiler, M., Budd, A., Gibson, T.J., Davey, N.E., Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation (2014) Chem Rev, 114, pp. 6733-6778
  • Van Roey, K., Gibson, T.J., Davey, N.E., Motif switches: decision-making in cell regulation (2012) Curr Opin Struct Biol, 22, pp. 378-385
  • Davey, N.E., Trave, G., Gibson, T.J., How viruses hijack cell regulation (2011) Trends Biochem Sci, 36, pp. 159-169
  • Kadaveru, K., Vyas, J., Schiller, M.R., Viral infection and human disease - insights from minimotifs (2008) Front Biosci, 13, pp. 6455-6471
  • Dyer, M.D., Murali, T.M., Sobral, B.W., The landscape of human proteins interacting with viruses and other pathogens (2008) PLoS Pathog, 4, p. e32
  • Elde, N.C., Malik, H.S., The evolutionary conundrum of pathogen mimicry (2009) Nat Rev Microbiol, 7, pp. 787-797
  • Ruhanen, H., Hurley, D., Ghosh, A., O'Brien, K.T., Johnston, C.R., Shields, D.C., Potential of known and short prokaryotic protein motifs as a basis for novel peptide-based antibacterial therapeutics: a computational survey (2014) Front Microbiol, 5, p. 4
  • Via, A., Uyar, B., Brun, C., Zanzoni, A., How pathogens use linear motifs to perturb host cell networks (2015) Trends Biochem Sci, 40, pp. 36-48
  • Zhang, L., Zhang, C., Ojcius, D.M., Sun, D., Zhao, J., Lin, X., Li, L., Yan, J., The mammalian cell entry (Mce) protein of pathogenic Leptospira species is responsible for RGD motif-dependent infection of cells and animals (2012) Mol Microbiol, 83, pp. 1006-1023
  • Tonelli, R.R., Giordano, R.J., Barbu, E.M., Torrecilhas, A.C., Kobayashi, G.S., Langley, R.R., Arap, W., Alves, M.J., Role of the gp85/trans-sialidases in Trypanosoma cruzi tissue tropism: preferential binding of a conserved peptide motif to the vasculature in vivo (2010) PLoS Negl Trop Dis, 4, p. e864
  • Safari, F., Murata-Kamiya, N., Saito, Y., Hatakeyama, M., Mammalian Pragmin regulates Src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif that is exploited by bacterial effectors (2011) Proc Natl Acad Sci U S A, 108, pp. 14938-14943
  • Evans, P., Sacan, A., Ungar, L., Tozeren, A., Sequence alignment reveals possible MAPK docking motifs on HIV proteins (2010) PLoS ONE, 5, p. e8942
  • Lee, C.W., Ferreon, J.C., Ferreon, A.C., Arai, M., Wright, P.E., Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation (2010) Proc Natl Acad Sci U S A, 107, pp. 19290-19295
  • Aitio, O., Hellman, M., Kazlauskas, A., Vingadassalom, D.F., Leong, J.M., Saksela, K., Permi, P., Recognition of tandem PxxP motifs as a unique Src homology 3-binding mode triggers pathogen-driven actin assembly (2010) Proc Natl Acad Sci U S A, 107, pp. 21743-21748
  • Garamszegi, S., Franzosa, E.A., Xia, Y., Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks (2013) PLoS Pathog, 9, p. e1003778
  • Chemes, L.B., Sanchez, I.E., Smal, C., de Prat-Gay, G., Targeting mechanism of the retinoblastoma tumor suppressor by a prototypical viral oncoprotein. Structural modularity, intrinsic disorder and phosphorylation of human papillomavirus E7 (2010) FEBS J, 277, pp. 973-988
  • de Souza, R.F., Iyer, L.M., Aravind, L., Diversity and evolution of chromatin proteins encoded by DNA viruses (2010) Biochim Biophys Acta, 1799, pp. 302-318
  • Zanier, K., Charbonnier, S., Sidi, A.O., McEwen, A.G., Ferrario, M.G., Poussin-Courmontagne, P., Cura, V., Ansari, T., Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins (2013) Science, 339, pp. 694-698
  • Liu, X., Marmorstein, R., Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor (2007) Genes Dev, 21, pp. 2711-2716
  • Noval, M.G., Gallo, M., Perrone, S., Salvay, A.G., Chemes, L.B., de Prat-Gay, G., Conformational dissection of a viral intrinsically disordered domain involved in cellular transformation (2013) PLOS ONE, 8, p. e72760
  • Borcherds, W., Theillet, F.X., Katzer, A., Finzel, A., Mishall, K.M., Powell, A.T., Wu, H., Selenko, P., Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells (2014) Nat Chem Biol, 10, pp. 1000-1002
  • Uversky, V.N., Intrinsically disordered proteins may escape unwanted interactions via functional misfolding (2011) Biochim Biophys Acta, 1814, pp. 693-712
  • Singh, M., Krajewski, M., Mikolajka, A., Holak, T.A., Molecular determinants for the complex formation between the retinoblastoma protein and LXCXE sequences (2005) J Biol Chem, 280, pp. 37868-37876
  • Stein, A., Aloy, P., Contextual specificity in peptide-mediated protein interactions (2008) PLoS ONE, 3, p. e2524
  • Chemes, L.B., Sanchez, I.E., de Prat-Gay, G., Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target (2011) J Mol Biol, 412, pp. 267-284
  • Aitio, O., Hellman, M., Skehan, B., Kesti, T., Leong, J.M., Saksela, K., Permi, P., Enterohaemorrhagic Escherichia coli exploits a tryptophan switch to hijack host f-actin assembly (2012) Structure, 20, pp. 1692-1703
  • Kaneko, T., Huang, H., Cao, X., Li, X., Li, C., Voss, C., Sidhu, S.S., Li, S.S., Superbinder SH2 domains act as antagonists of cell signaling (2012) Sci Signal, 5, p. ra68
  • Gibson, T.J., Seiler, M., Veitia, R.A., The transience of transient overexpression (2013) Nat Methods, 10, pp. 715-721
  • Ferreon, J.C., Martinez-Yamout, M.A., Dyson, H.J., Wright, P.E., Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein (2009) Proc Natl Acad Sci U S A, 106, pp. 13260-13265
  • Burke, J.R., Hura, G.L., Rubin, S.M., Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control (2012) Genes Dev, 26, pp. 1156-1166
  • Fuxreiter, M., Tompa, P., Fuzzy complexes: a more stochastic view of protein function (2012) Adv Exp Med Biol, 725, pp. 1-14
  • Jansma, A.L., Martinez-Yamout, M.A., Liao, R., Sun, P., Dyson, H.J., Wright, P.E., The high-risk HPV16 E7 oncoprotein mediates interaction between the transcriptional coactivator CBP and the retinoblastoma protein pRb (2014) J Mol Biol, 426, pp. 4030-4048
  • Boutros, R., Lobjois, V., Ducommun, B., CDC25 phosphatases in cancer cells: key players? Good targets? (2007) Nat Rev Cancer, 7, pp. 495-507
  • Besson, A., Dowdy, S.F., Roberts, J.M., CDK inhibitors: cell cycle regulators and beyond (2008) Dev Cell, 14, pp. 159-169
  • Primorac, I., Musacchio, A., Panta rhei: the APC/C at steady state (2013) J Cell Biol, 201, pp. 177-189
  • Ferreon, A.C., Ferreon, J.C., Wright, P.E., Deniz, A.A., Modulation of allostery by protein intrinsic disorder (2013) Nature, 498, pp. 390-394
  • Felsani, A., Mileo, A.M., Paggi, M.G., Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins (2006) Oncogene, 25, pp. 5277-5285
  • Breuer, S., Schievink, S.I., Schulte, A., Blankenfeldt, W., Fackler, O.T., Geyer, M., Molecular design, functional characterization and structural basis of a protein inhibitor against the HIV-1 pathogenicity factor Nef (2011) PLoS ONE, 6, p. e20033
  • Wagner, A., (2011) The Origin of Evolutionary Innovations: A Theory of Transformative Change in Living Systems, , Oxford Press, Oxford
  • Moses, A.M., Liku, M.E., Li, J.J., Durbin, R., Regulatory evolution in proteins by turnover and lineage-specific changes of cyclin-dependent kinase consensus sites (2007) Proc Natl Acad Sci U S A, 104, pp. 17713-17718
  • Beltrao, P., Serrano, L., Specificity and evolvability in eukaryotic protein interaction networks (2007) PLoS Comput Biol, 3, p. e25
  • Neduva, V., Russell, R.B., Linear motifs: evolutionary interaction switches (2005) FEBS Lett, 579, pp. 3342-3345
  • Chemes, L.B., Glavina, J., Alonso, L.G., Marino-Buslje, C., de Prat-Gay, G., Sanchez, I.E., Sequence evolution of the intrinsically disordered and globular domains of a model viral oncoprotein (2012) PLoS ONE, 7, p. e47661
  • Brown, C.J., Johnson, A.K., Dunker, A.K., Daughdrill, G.W., Evolution and disorder (2011) Curr Opin Struct Biol, 21, pp. 441-446
  • Patel, M.R., Loo, Y.M., Horner, S.M., Gale, M., Malik, H.S., Convergent evolution of escape from hepaciviral antagonism in primates (2012) PLoS Biol, 10, p. e1001282
  • Rosso, L., Marques, A.C., Weier, M., Lambert, N., Lambot, M.A., Vanderhaeghen, P., Kaessmann, H., Birth and rapid subcellular adaptation of a hominoid-specific CDC14 protein (2008) PLoS Biol, 6, p. e140
  • Tan, C.S., Pasculescu, A., Lim, W.A., Pawson, T., Bader, G.D., Linding, R., Positive selection of tyrosine loss in metazoan evolution (2009) Science, 325, pp. 1686-1688
  • Via, A., Gherardini, P.F., Ferraro, E., Ausiello, G., Scalia Tomba, G., Helmer-Citterich, M., False occurrences of functional motifs in protein sequences highlight evolutionary constraints (2007) BMC Bioinform, 8, p. 68
  • Davey, N.E., Van Roey, K., Weatheritt, R.J., Toedt, G., Uyar, B., Altenberg, B., Budd, A., Gibson, T.J., Attributes of short linear motifs (2012) Mol Biosyst, 8, pp. 268-281
  • Zielinska, D.F., Gnad, F., Schropp, K., Wisniewski, J.R., Mann, M., Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery (2012) Mol Cell, 46, pp. 542-548
  • Nguyen Ba, A.N., Strome, B., Hua, J.J., Desmond, J., Gagnon-Arsenault, I., Weiss, E.L., Landry, C.R., Moses, A.M., Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences (2014) PLoS Comput Biol, 10, p. e1003977
  • Hittinger, C.T., Carroll, S.B., Evolution of an insect-specific GROUCHO-interaction motif in the ENGRAILED selector protein (2008) Evol Dev, 10, pp. 537-545
  • Bruning, J.B., Shamoo, Y., Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-delta p66 subunit and flap endonuclease-1 (2004) Structure, 12, pp. 2209-2219
  • Holt, L.J., Tuch, B.B., Villen, J., Johnson, A.D., Gygi, S.P., Morgan, D.O., Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution (2009) Science, 325, pp. 1682-1686
  • Goldman, A., Roy, J., Bodenmiller, B., Wanka, S., Landry, C.R., Aebersold, R., Cyert, M.S., The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity (2014) Mol Cell, 55, pp. 422-435
  • Hagai, T., Azia, A., Babu, M.M., Andino, R., Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions (2014) Cell Rep, 7, pp. 1729-1739
  • Pushker, R., Mooney, C., Davey, N.E., Jacque, J.M., Shields, D.C., Marked variability in the extent of protein disorder within and between viral families (2013) PLOS ONE, 8, p. e60724
  • Duffy, S., Shackelton, L.A., Holmes, E.C., Rates of evolutionary change in viruses: patterns and determinants (2008) Nat Rev Genet, 9, pp. 267-276
  • Daugherty, M.D., Malik, H.S., Rules of engagement: molecular insights from host-virus arms races (2012) Annu Rev Genet, 46, pp. 677-700
  • Wei, P., Wong, W.W., Park, J.S., Corcoran, E.E., Peisajovich, S.G., Onuffer, J.J., Weiss, A., Lim, W.A., Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells (2012) Nature, 488, pp. 384-388
  • Chemes, L.B., Glavina, J., Faivovich, J., de Prat-Gay, G., Sanchez, I.E., Evolution of linear motifs within the papillomavirus E7 oncoprotein (2012) J Mol Biol, 422, pp. 336-346
  • Lo, M.K., Sogaard, T.M., Karlin, D.G., Evolution and structural organization of the C proteins of paramyxovirinae (2014) PLOS ONE, 9, p. e90003
  • Karlin, D., Belshaw, R., Detecting remote sequence homology in disordered proteins: discovery of conserved motifs in the N-termini of Mononegavirales phosphoproteins (2012) PLoS ONE, 7, p. e31719
  • Jackson, D., Hossain, M.J., Hickman, D., Perez, D.R., Lamb, R.A., A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity (2008) Proc Natl Acad Sci U S A, 105, pp. 4381-4386
  • Prehaud, C., Wolff, N., Terrien, E., Lafage, M., Megret, F., Babault, N., Cordier, F., Menager, P., Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein (2010) Sci Signal, 3, p. ra5
  • Yang, C.W., A comparative study of short linear motif compositions of the influenza A virus ribonucleoproteins (2012) PLoS ONE, 7, p. e38637
  • Igarashi, M., Ito, K., Kida, H., Takada, A., Genetically destined potentials for N-linked glycosylation of influenza virus hemagglutinin (2008) Virology, 376, pp. 323-329
  • Abe, Y., Takashita, E., Sugawara, K., Matsuzaki, Y., Muraki, Y., Hongo, S., Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin (2004) J Virol, 78, pp. 9605-9611
  • Lawrence, P., LaRocco, M., Baxt, B., Rieder, E., Examination of soluble integrin resistant mutants of foot-and-mouth disease virus (2013) Virol J, 10, p. 2
  • Pim, D., Bergant, M., Boon, S.S., Ganti, K., Kranjec, C., Massimi, P., Subbaiah, V.K., Banks, L., Human papillomaviruses and the specificity of PDZ domain targeting (2012) FEBS J, 279, pp. 3530-3537
  • Neveu, G., Cassonnet, P., Vidalain, P.O., Rolloy, C., Mendoza, J., Jones, L., Tangy, F., Tafforeau, L., Comparative analysis of virus-host interactomes with a mammalian high-throughput protein complementation assay based on Gaussia princeps luciferase (2012) Methods, 58, pp. 349-359
  • Dampier, W., Evans, P., Ungar, L., Tozeren, A., Host sequence motifs shared by HIV predict response to antiretroviral therapy (2009) BMC Med Genomics, 2, p. 47
  • Purdy, M.A., Lara, J., Khudyakov, Y.E., The hepatitis E virus polyproline region is involved in viral adaptation (2012) PLOS ONE, 7, p. e35974
  • Dolan, P.T., Roth, A.P., Xue, B., Sun, R., Dunker, A.K., Uversky, V.N., LaCount, D.J., Intrinsic disorder mediates hepatitis C virus core - host cell protein interactions (2015) Protein Sci, 24, pp. 221-235
  • Fares, M.A., Moya, A., Escarmis, C., Baranowski, E., Domingo, E., Barrio, E., Evidence for positive selection in the capsid protein-coding region of the foot-and-mouth disease virus (FMDV) subjected to experimental passage regimens (2001) Mol Biol Evol, 18, pp. 10-21
  • McGivern, D.R., Villanueva, R.A., Chinnaswamy, S., Kao, C.C., Lemon, S.M., Impaired replication of hepatitis C virus containing mutations in a conserved NS5B retinoblastoma protein-binding motif (2009) J Virol, 83, pp. 7422-7433
  • Hertz, T., Nolan, D., James, I., John, M., Gaudieri, S., Phillips, E., Huang, J.C., Jojic, N., Mapping the landscape of host-pathogen coevolution: HLA class I binding and its relationship with evolutionary conservation in human and viral proteins (2011) J Virol, 85, pp. 1310-1321
  • Sarmady, M., Dampier, W., Tozeren, A., Sequence- and interactome-based prediction of viral protein hotspots targeting host proteins: a case study for HIV Nef (2011) PLoS ONE, 6, p. e20735
  • He, L., De Groot, A.S., Gutierrez, A.H., Martin, W.D., Moise, L., Bailey-Kellogg, C., Integrated assessment of predicted MHC binding and cross-conservation with self reveals patterns of viral camouflage (2014) BMC Bioinform, 15 (SUPPL), p. S1
  • Davey, N.E., Haslam, N.J., Shields, D.C., Edwards, R.J., SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs (2010) Nucleic Acids Res, 38, pp. W534-W539

Citas:

---------- APA ----------
Chemes, L.B., de Prat-Gay, G. & Sánchez, I.E. (2015) . Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions. Current Opinion in Structural Biology, 32, 91-101.
http://dx.doi.org/10.1016/j.sbi.2015.03.004
---------- CHICAGO ----------
Chemes, L.B., de Prat-Gay, G., Sánchez, I.E. "Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions" . Current Opinion in Structural Biology 32 (2015) : 91-101.
http://dx.doi.org/10.1016/j.sbi.2015.03.004
---------- MLA ----------
Chemes, L.B., de Prat-Gay, G., Sánchez, I.E. "Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions" . Current Opinion in Structural Biology, vol. 32, 2015, pp. 91-101.
http://dx.doi.org/10.1016/j.sbi.2015.03.004
---------- VANCOUVER ----------
Chemes, L.B., de Prat-Gay, G., Sánchez, I.E. Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions. Curr. Opin. Struct. Biol. 2015;32:91-101.
http://dx.doi.org/10.1016/j.sbi.2015.03.004