Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Intercellular interactions in the nervous system are mediated by two types of dedicated structural arrangements: electrical and chemical synapses. Several characteristics distinguish these two mechanisms of communication, such as speed, reliability and the fact that electrical synapses are, potentially, bidirectional. Given these properties, electrical synapses can subserve, in addition to synchrony, three main interrelated network functions: signal amplification, noise reduction and/or coincidence detection. Specific network motifs in sensory and motor systems of invertebrates and vertebrates illustrate how signal transmission through electrical junctions contributes to a complex processing of information. © 2016 Elsevier Ltd

Registro:

Documento: Artículo
Título:Functional contributions of electrical synapses in sensory and motor networks
Autor:Szczupak, L.
Filiación:Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBYNE UBA-CONICET, Pabellón II, piso 2. Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Palabras clave:cell communication; cell interaction; electrical synapse; interneuron; membrane depolarization; membrane potential; mitral cell; motor control; motor system; nerve cell network; nerve ending; nerve projection; nonhuman; olfactory bulb; priority journal; Review; sensory system; sequence homology; signal transduction; startle reflex; animal; electrical synapse; motoneuron; physiology; sensory nerve cell; Animals; Electrical Synapses; Motor Neurons; Sensory Receptor Cells
Año:2016
Volumen:41
Página de inicio:99
Página de fin:105
DOI: http://dx.doi.org/10.1016/j.conb.2016.08.005
Título revista:Current Opinion in Neurobiology
Título revista abreviado:Curr. Opin. Neurobiol.
ISSN:09594388
CODEN:COPUE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09594388_v41_n_p99_Szczupak

Referencias:

  • Kiehn, O., Tresch, M.C., Gap junctions and motor behavior (2002) TINS, 25, pp. 108-115
  • Marín Burgin, A., Eisenhart, F.J., Baca, S.M., Kristan, W.B., French, K.A., Sequential development of electrical and chemical synaptic connections generates a specific behavioral circuit in the leech (2005) J Neurosci, 25, pp. 2478-2489
  • Belousov, A.B., Fontes, J.D., Neuronal gap junctions: making and breaking connections during development and injury (2013) Trends Neurosci, 36, pp. 227-236
  • Pereda, A.E., Electrical synapses and their functional interactions with chemical synapses (2014) Nat Rev Neurosci, 15, pp. 250-263. , This extensive review analyzes the structural complexity of gap junctions, their role in development, the effect of neuromodulators in their expression, and their involvement in pathology
  • Stebbings, L.A., Todman, M.G., Phillips, R., Greer, C.E., Tam, J., Phelan, P., Jacobs, K., Davies, J.A., Gap junctions in Drosophila: developmental expression of the entire innexin gene family (2002) Mech Dev, 113, pp. 197-205
  • Todd, K.L., Kristan, W.B., Jr., French, K.A., Gap junction expression is required for normal chemical synapse formation (2010) J Neurosci, 30, pp. 15277-15285
  • Harris, A.L., Emerging issues of connexin channels: biophysical fills the gap (2001) Quart Rev Biophys, 34, pp. 325-472
  • Hua, V.B., Chang, A.B., Tchieu, J.H., Kumar, N.M., Nielsen, P.A., Saier, M.H., Sequence and phylogenetic analyses of 4 TMS junctional proteins of animals: connexins, innexins, claudins and occludins (2003) J Membrane Biol, 194, pp. 59-76
  • Phelan, P., Starich, T.A., Innexins get into the gap (2001) BioEssays, 23, pp. 388-396
  • Evans, W.H., Martin, P.E.M., Gap junctions: structure and function (2002) Mol Membrane Biol, 19, pp. 121-136
  • Simonsen, K.T., Moerman, D.G., Naus, C.C., Gap junctions in C. elegans (2014) Front Physiol, 5, p. 40
  • Kandarian, B., Sethi, J., Wu, A., Baker, M., Yazdani, N., Kym, E., Sanchez, A., Macagno, E., The medicinal leech genome encodes 21 innexin genes: different combinations are expressed by identified central neurons (2012) Dev Genes Evol, 222, pp. 29-44. , This report identifies and characterizes 9 new innexin genes in Hirudo verbana, a leech species highly used in physiological studies. It describes the expression of the 21 innexins identified in this species during development and in the adult nervous system, including the analysis in identified neurons
  • Bauer, R., Loer, B., Ostrowski, K., Martini, J., Weimbs, A., Lechner, H., Hoch, M., Intercellular communication: the Drosophila innexin multiprotein family of gap junction proteins (2005) Chem Biol, 12, pp. 515-526
  • Ducret, E., Alexopoulos, H., Le Feuvre, Y., Davies, J.A., Meyrand, P., Bacon, J.P., Fenelon, V.S., Innexins in the lobster stomatogastric nervous system: cloning, phylogenetic analysis, developmental changes and expression within adult identified dye and electrically coupled neurons (2006) Eur J Neurosci, 24, pp. 3119-3133
  • Shruti, S., Schulz, D.J., Lett, K.M., Marder, E., Electrical coupling and innexin expression in the stomatogastric ganglion of the crab Cancer borealis (2014) J Neurophysiol, 112, pp. 2946-2958
  • Willecke, K., Eiberger, J., Degen, J., Eckardt, D., Romualdi, A., Guldenagel, M., Deutsch, U., Sohl, G., Structural and functional diversity of connexin genes in the mouse and human genome (2002) Biol Chem, 383, pp. 725-737
  • Oshima, A., Matsuzawa, T., Murata, K., Tani, K., Fujiyoshi, Y., Hexadecameric structure of an invertebrate gap junction channel (2016) J Mol Biol, 428, pp. 1227-1236. , Three-dimensional structural analysis of crystallized C. elegans innexin-6 gap junction channels determined that each one comprises 16 subunits, rather than the 12 subunits described for connexins
  • Smetters, D.K., Zador, A., Synaptic transmission: noisy synapses and noisy neurons (1996) Curr Biol, 6, pp. 1217-1218
  • Gutierrez, G.J., Marder, E., Rectifying electrical synapses can affect the influence of synaptic modulation on output pattern robustness (2013) J Neurosci, 33, pp. 13238-13248
  • Nadim, F., Golowasch, J., Signal transmission between gap-junctionally coupled passive cables is most effective at an optimal diameter (2006) J Neurophysiol, 95, pp. 3831-3843
  • Antonsen, B.L., Edwards, D.H., Differential dye coupling reveals lateral giant escape circuit in crayfish (2003) J Comp Neurol, 466, pp. 1-13
  • Christie, J.M., Bark, C., Hormuzdi, S.G., Helbig, I., Monyer, H., Westbrook, G.L., Connexin36 mediates spike synchrony in olfactory bulb glomeruli (2005) Neuron, 46, pp. 761-772
  • Fukuda, T., Kosaka, T., Singer, W., Galuske, R.A., Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network (2006) J Neurosci, 26, pp. 3434-3443
  • Vervaeke, K., Lorincz, A., Nusser, Z., Silver, R.A., Gap junctions compensate for sublinear dendritic integration in an inhibitory network (2012) Science, 335, pp. 1624-1628. , Golgi neurons, inhibitory interneuron in the mammalian cerebellar cortex, are electrically coupled. GJs present in the dendrites enable lateral excitation that counteracts sublinear input integration in this passive compartment
  • Evans, J.D., A cable model for coupled neurons with somatic gap junctions (2005) Biol Cybern, 92, pp. 164-176
  • Gibson, J.R., Beierlein, M., Connors, B.W., Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4 (2005) J Neurophysiol, 93, pp. 467-480
  • Vervaeke, K., Lorincz, A., Gleeson, P., Farinella, M., Nusser, Z., Silver, R.A., Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input (2010) Neuron, 67, pp. 435-451
  • Fernandez de Miguel, F., Vargas-Caballero, M., Garcia-Perez, E., Spread of synaptic potentials through electrical synapses in retzius neurones of the leech (2001) J Exp Biol, 204, pp. 3241-3250
  • Carbo Tano, M., Vilarchao, M.E., Szczupak, L., Graded boosting of synaptic signals by low-threshold voltage-activated calcium conductance (2015) J Neurophysiol, 114, pp. 332-340. , A low threshold voltage activated calcium conductance boosts synaptic responses in a pair of nonspiking neurons of the leech. The homolog pair of neurons is electrically coupled and the calcium conductance aids the propagation of signals across electrical synapses
  • Curti, S., Hoge, G., Nagy, J.I., Pereda, A.E., Synergy between electrical coupling and membrane properties promotes strong synchronization of neurons of the mesencephalic trigeminal nucleus (2012) J Neurosci, 32, pp. 4341-4359. , Sodium and potassium conductances enhance the transmission of signals with high-frequency content via GJs, promoting synchronization of spikes among neurons of the mesencephalic trigeminal nucleus of mammals
  • Curti, S., Pereda, A.E., Voltage-dependent enhancement of electrical coupling by a subthreshold sodium current (2004) J Neurosci, 24, pp. 3999-4010
  • Bukauskas, F.F., Verselis, V.K., Gap junction channel gating (2004) Biomed Biophys Acta, 1662, pp. 42-60
  • Phelan, P., Goulding, L.A., Tam, J.L., Allen, M.J., Dawber, R.J., Davies, J.A., Bacon, J.P., Molecular mechanism of rectification at identified electrical synapses in the Drosophila giant fiber system (2008) Curr Biol, 18, pp. 1955-1960
  • Rela, L., Szczupak, L., In situ characterization of a rectifying electrical junction (2007) J Neurophysiol, 97, pp. 1405-1412
  • Rash, J.E., Curti, S., Vanderpool, K.G., Kamasawa, N., Nannapaneni, S., Palacios-Prado, N., Flores, C.E., Lynn, B.D., Molecular and functional asymmetry at a vertebrate electrical synapse (2013) Neuron, 79, pp. 957-969. , This report establishes that the gap junctions formed between auditory terminals and goldfish Mauthner neurons are heterotypic. The junctions exhibit an additional asymmetry: due to anatomical characteristics the input resistance of the Mauthner cell is significantly smaller than that of the auditory cells. The study indicates that both factors contribute to the marked rectification observed in this electrical synaptic connection
  • Rodriguez, M.J., Perez-Etchegoyen, C.B., Szczupak, L., Premotor nonspiking neurons regulate coupling among motoneurons that innervate overlapping muscle fiber population (2009) J Comp Physiol A, 195. , 1432-1351
  • Rela, L., Szczupak, L., Coactivation of motoneurons regulated by a network combining electrical and chemical synapses (2003) J Neurosci, 23, pp. 682-692
  • Jadzinsky, P.D., Baccus, S.A., Transformation of visual signals by inhibitory interneurons in retinal circuits (2013) Annu Rev Neurosci, 36, pp. 403-428
  • Wilson, R.I., Early olfactory processing in Drosophila: mechanisms and principles (2013) Annu Rev Neurosci, 36, pp. 217-241
  • Antonsen, B.L., Herberholz, J., Edwards, D.H., The retrograde spread of synaptic potentials and recruitment of presynaptic inputs (2005) J Neurosci, 25, pp. 3086-3094
  • Herberholz, J., Antonsen, B.L., Edwards, D.H., A lateral excitatory network in the escape circuit of crayfish (2002) J Neurosci, 22, pp. 9078-9085
  • Chatzigeorgiou, M., Schafer, W.R., Lateral facilitation between primary mechanosensory neurons controls nose touch perception in C. elegans (2011) Neuron, 70, pp. 299-309
  • Rabinowitch, I., Chatzigeorgiou, M., Schafer, W.R., A gap junction circuit enhances processing of coincident mechanosensory inputs (2013) Curr Biol, 23, pp. 963-967
  • Farrow, K., Borst, A., Haag, J., Sharing receptive fields with your neighbors: tuning the vertical system cells to wide field motion (2005) J Neurosci, 25, pp. 3985-3993
  • Haag, J., Borst, A., Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons (2004) Nat Neurosci, 7, pp. 628-634
  • Elyada, Y.M., Haag, J., Borst, A., Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons (2009) Nat Neurosci, 12, pp. 327-332
  • Cuntz, H., Haag, J., Forstner, F., Segev, I., Borst, A., Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons (2007) Proc Natl Acad Sci U S A, 104, pp. 10229-10233
  • DeVries, S.H., Qi, X., Smith, R., Makous, W., Sterling, P., Electrical coupling between mammalian cones (2002) Curr Biol, 12, pp. 1900-1907
  • Bloomfield, S.A., Volgyi, B., The diverse functional roles and regulation of neuronal gap junctions in the retina (2009) Nat Rev Neurosci, 10, pp. 495-506
  • Demb, J.B., Singer, J.H., Functional circuitry of the retina (2015) Ann Rev Vis Sci, 1, pp. 263-289
  • Kuo, S.P., Schwartz, G.W., Rieke, F., Nonlinear spatiotemporal integration by electrical and chemical synapses in the retina (2016) Neuron, 90, pp. 320-332. , Retina bipolar cells are connected among themselves through electrical synapses. The authors established that coupling among neighboring bipolar cells enhances their output in response to low-contrast stimulation, generating a supralinear integration of spatiotemporally correlated visual inputs that could be of relevance in encoding motion
  • Yaksi, E., Wilson, R.I., Electrical coupling between olfactory glomeruli (2010) Neuron, 67, pp. 1034-1047
  • Huang, J., Zhang, W., Qiao, W., Hu, A., Wang, Z., Functional connectivity and selective odor responses of excitatory local interneurons in Drosophila antennal lobe (2010) Neuron, 67, pp. 1021-1033
  • Wang, K., Gong, J., Wang, Q., Li, H., Cheng, Q., Liu, Y., Zeng, S., Wang, Z., Parallel pathways convey olfactory information with opposite polarities in Drosophila (2014) Proc Natl Acad Sci U S A, 111, pp. 3164-3169. , This report describes the interactions of GABAergic projection neurons within the antennal lobes in Drosophila using dual-color calcium imaging. These neurons constitute an inhibitory feed forward path in the olfactory system. They receive direct inputs from olfactory receptor neurons, span multiple glomeruli, contacting cholinergic projection neurons with mixed electrical and chemical synapses. These neurons provide additional horizontal processing among different glomeruli and influence animal behavior
  • Christie, J.M., Westbrook, G.L., Lateral excitation within the olfactory bulb (2006) J Neurosci, 26, pp. 2269-2277
  • Zhu, P., Frank, T., Friedrich, R.W., Equalization of odor representations by a network of electrically coupled inhibitory interneurons (2013) Nat Neurosci, 16, pp. 1678-1686. , A mechanism that grants intensity-invariant identification of odors is described in the zebrafish olfactory bulb. Interneurons linked via gap junctions and GABAergic synapses to mitral cells boost the responses to weak inputs and attenuate the responses to strong inputs, stabilizing the output activity patterns against variations in stimulus strength
  • Mulloney, B., Smarandache-Wellmann, C., Neurobiology of the crustacean swimmeret system (2012) Prog Neurobiol, 96, pp. 242-267
  • Poppele, R.B.G., Sophisticated spinal contributions to motor control (2003) TINS, 26, pp. 269-276
  • Zhen, M., Samuel, A.D., C. elegans locomotion: small circuits, complex functions (2015) Curr Opin Neurobiol, 33, pp. 117-126
  • Malyshev, A.Y., Norekian, T.P., Phase-locked coordination between two rhythmically active feeding structures in the mollusk Clione limacina. I. Motor neurons (2002) J Neurophysiol, 87, pp. 2996-3005
  • Fan, R.J., Marin Burgin, A., French, K.A., Friesen, W.O., A dye mixture (Neurobiotin and Alexa 488) reveals extensive dye-coupling among neurons in leeches; physiology confirms the connections (2005) J Comp Physiol A, 191, pp. 1157-1171
  • Rekling, J.C., Shao, X.M., Feldman, J.L., Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the preBotzinger complex (2000) J Neurosci, 20, p. RC113
  • Wenning, A., Norris, B.J., Doloc-Mihu, A., Calabrese, R.L., Variation in motor output and motor performance in a centrally generated motor pattern (2014) J Neurophysiol, 112, pp. 95-109
  • Wright, T.M., Jr., Calabrese, R.L., Contribution of motoneuron intrinsic properties to fictive motor pattern generation (2011) J Neurophysiol, 106, pp. 538-553
  • Friesen, W.O., Neuronal control of leech swimming movements (1989) Neuronal and Cellular Oscillators, Cellular Clock Series, 2, pp. 269-316. , J.W. Jacklet Marcel Dekker
  • Maynard, D.M., Selverston, A.I., Organization of the stomatogastric ganglion of the spiny lobster (1975) J Comp Physiol, 100, pp. 161-182
  • Song, J., Ampatzis, K., Bjornfors, E.R., El Manira, A., Motor neurons control locomotor circuit function retrogradely via gap junctions (2016) Nature, 529, pp. 399-402. , This report confirms in zebrafish that motoneurons can participate in motor control networks, as documented in several invertebrate systems. Motoneurons are linked to premotor neurons by electrical synapses and influence the generation of rhythmic activity
  • Thompson, S., Watson, W.H., 3rd, Central pattern generator for swimming in Melibe (2005) J Exp Biol, 208, pp. 1347-1361
  • Sakurai, A., Newcomb, J.M., Lillvis, J.L., Katz, P.S., Different roles for homologous interneurons in species exhibiting similar rhythmic behaviors (2011) Curr Biol, 21, pp. 1036-1043
  • Kawano, T., Po, M.D., Gao, S., Leung, G., Ryu, W.S., Zhen, M., An imbalancing act: gap junctions reduce the backward motor circuit activity to bias C. elegans for forward locomotion (2011) Neuron, 72, pp. 572-586
  • Szczupak, L., Recurrent inhibition in motor systems, a comparative analysis (2014) J Physiol Paris, 108, pp. 148-154. , This review summarizes a mechanism of recurrent inhibition uncovered in the leech nervous system and relates it to what has been described in vertebrates. The leech network is centered on a pair of nonspiking neurons that are linked to every excitatory motoneuron in the leech via chemical and electrical synapses. This network achieves two major effects: uncouples motoneurons linked by electrical synapses and controls the general level of motor activity throughout specific motor patterns
  • Rodriguez, M.J., Alvarez, R.J., Szczupak, L., Effect of a nonspiking neuron on motor patterns of the leech (2012) J Neurophysiol, 107, pp. 1917-1924

Citas:

---------- APA ----------
(2016) . Functional contributions of electrical synapses in sensory and motor networks. Current Opinion in Neurobiology, 41, 99-105.
http://dx.doi.org/10.1016/j.conb.2016.08.005
---------- CHICAGO ----------
Szczupak, L. "Functional contributions of electrical synapses in sensory and motor networks" . Current Opinion in Neurobiology 41 (2016) : 99-105.
http://dx.doi.org/10.1016/j.conb.2016.08.005
---------- MLA ----------
Szczupak, L. "Functional contributions of electrical synapses in sensory and motor networks" . Current Opinion in Neurobiology, vol. 41, 2016, pp. 99-105.
http://dx.doi.org/10.1016/j.conb.2016.08.005
---------- VANCOUVER ----------
Szczupak, L. Functional contributions of electrical synapses in sensory and motor networks. Curr. Opin. Neurobiol. 2016;41:99-105.
http://dx.doi.org/10.1016/j.conb.2016.08.005