Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Motion vision originated during the Cambrian explosion more than 500 million years ago, likely triggered by the race for earliest detection between preys and predators. To successfully evade a predator's attack a prey must react quickly and reliably, which imposes a common constrain to the implementation of escape responses among different species. Thus, neural circuits subserving fast escape responses are usually straightforward and contain giant neurons. This review summarizes knowledge about a small group of motion-sensitive giant neurons thought to be central in guiding the escape performance of crabs to visual stimuli. The flexibility of the escape behavior contrasts with the stiffness of the optomotor response, indicating a task-dependent early segregation of visual pathways. © 2016 Elsevier Ltd

Registro:

Documento: Artículo
Título:Visual motion processing subserving behavior in crabs
Autor:Tomsic, D.
Filiación:Depto Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Pabellón 2 Ciudad Universitaria (1428), Buenos Aires, Argentina
Palabras clave:animal behavior; avoidance behavior; biotransformation; crab; giant nerve cell; lobula giant nerve cell; locomotion; nerve cell plasticity; nonhuman; phenomenology; priority journal; Review; rigidity; velocity; visual field; visual memory; visual motion processing subserving behavior; visual stimulation; visual system; animal; animal behavior; Brachyura; movement perception; physiology; Animals; Behavior, Animal; Brachyura; Motion Perception; Visual Pathways
Año:2016
Volumen:41
Página de inicio:113
Página de fin:121
DOI: http://dx.doi.org/10.1016/j.conb.2016.09.003
Título revista:Current Opinion in Neurobiology
Título revista abreviado:Curr. Opin. Neurobiol.
ISSN:09594388
CODEN:COPUE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09594388_v41_n_p113_Tomsic

Referencias:

  • Borst, A., Helmstaedter, M., Common circuit design in fly and mammalian motion vision (2015) Nat Neurosci, 8, pp. 1067-1076. , An excellent review covering current knowledge of the early stages of motion vision in the insect optic lobe and discussing commonalities with motion vision in vertebrates
  • Silies, M., Gohl, D.M., Clandinin, T.R., Motion-detecting circuits in flies: coming into view (2014) Annu Rev Neurosci, 37, pp. 307-327. , An excellent review covering current knowledge of the early stages of motion vision in the insect optic lobe and discussing commonalities with motion vision in vertebrates
  • Fotowat, H., Gabbiani, F., Collision detection as a model for sensory-motor integration (2011) Annu Rev Neurosci, 34, pp. 1-19. , An important review describing the cellular and network mechanisms underlying collision avoidance behaviors focused on studies in the locust
  • Herberholz, J., Marquart, G.D., Decision making and behavioral choice during predator avoidance (2012) Front Neurosci, 6, p. 125
  • Hemmi, J.M., Pfeil, A., A multi-stage anti-predator response increases information on predation risk (2010) J Exp Biol, 213, pp. 1484-1489
  • Card, G.M., Escape behaviors in insects (2012) Curr Opin Neurobiol, 22, pp. 180-186
  • Magani, F., Luppi, T., Nuñez, J., Tomsic, D., Predation risk modifies behaviour by shaping the response of identified brain neurons (2016) J Exp Biol, 219, pp. 172-1177. , This paper shows that crabs from an isolated population under high risk of predation display stronger neuronal and behavioral responses to visual threats than those from a population at low risk of predation. The results suggest a strong linkage between the pressure imposed by the predation risk, the response of identified neurons and the escape response of the animal
  • Oliva, D., Medan, V., Tomsic, D., Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae) (2007) J Exp Biol, 210, pp. 865-880
  • Oliva, D., Tomsic, D., Visuo-motor transformations involved in the escape response to looming stimuli in the crab Neohelice (=Chasmagnathus) granulata (2012) J Exp Biol, 215, pp. 3488-3500
  • Land, M., Layne, J., The visual control of behavior in fiddler crabs. 2. Tracking control systems in courtship and defense (1995) J Comp Physiol A, 177, pp. 91-103
  • Medan, V., Berón de Astrada, M., Scarano, F., Tomsic, D., A network of visual motion-sensitive neurons for computing object position in an arthropod (2015) J Neurosci, 35, pp. 6654-6666. , By combining behavioral, anatomical and electrophysiological experiments in the crab, the authors describe a neural system formed by giant motion-sensitive neurons that map the entire visual field of the crab. These projecting elements are thought to convey information on object positions, likely in the form of population vectors, to allow the accurate directional responses achieved by the animal
  • Ma, X., Hou, X., Edgecombe, G.D., Strausfeld, N.J., Complex brain and optic lobes in an early Cambrian arthropod (2012) Nature, 490, pp. 258-261
  • Strausfeld, N.J., Andrew, D.R., A new view of insect-crustacean relationships I. Inferences from neural cladistics and comparative neuroanatomy (2011) Arthropod Struct Dev, 40, pp. 276-288
  • Sztarker, J., Strausfeld, N.J., Tomsic, D., Organization of the optic lobes that support motion detection in a semiterrestrial crab (2005) J Comp Neurol, 493, pp. 396-412
  • Lee, Y.J., Jönsson, H.O., Nordström, K., Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons (2015) PLoS One, 10, p. e0126265
  • Mertes, M., Dittmar, L., Egelhaaf, M., Boeddeker, N., Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task (2014) Front Behav Neurosci, 8, p. 335
  • de Vries, S.E.J., Clandinin, T.R., Loom-sensitive neurons link computation to action in the Drosophila visual system (2012) Curr Biol, 22, pp. 353-362. , Using the fly genetic advantages in combination with behavioral analyses and technically challenging electrophysiology the authors show that a small group of neurons from the lobula complex serves to trigger the loom escape response
  • Berón de Astrada, M., Tomsic, D., Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura) (2002) J Comp Physiol A, 188, pp. 539-551
  • Medan, V., Oliva, D., Tomsic, D., Characterization of interneurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus (2007) J Neuorphysiol, 98, pp. 2414-2428
  • Tomsic, D., Berón de Astrada, M., Starker, J., Identification of individual neurons reflecting short- and long-term visual memory in an arthropod (2003) J Neurosci, 23, pp. 8539-8546. , In vivo intracellular recording from the almost intact animal during learning allowed the first identification of individual neurons supporting long-term visual memory in an arthropod
  • Sztarker, J., Tomsic, D., Binocular visual integration in the crustacean nervous system (2004) J Comp Physiol A, 190, pp. 951-962
  • Oliva, D., Tomsic, D., Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice (2014) J Neurophysiol, 112, pp. 1477-1490
  • Zeil, J., Hemmi, J.M., The visual ecology of fiddler crabs (2006) J Comp Physiol A, 192, pp. 1-25
  • Berón de Astrada, M., Bengochea, M., Sztarker, J., Delorenzi, A., Tomsic, D., Behaviorally related neural plasticity in the arthropod optic lobes (2013) Curr Biol, 23, pp. 1389-1398. , Visual systems adapt rapidly to irrelevant objects moving repeatedly. Using an original staining method for optical recording and electrophysiology in the crab's optic neuropils, this paper shows that deep transient adaptations to rapidly repeated object motion take place at a surprisingly early stage of the visual processing pathway
  • Hermitte, G., Pedreira, M.E., Tomsic, D., Maldonado, H., Context shift and protein synthesis inhibition disrupt long-term habituation after spaced, but not massed, training in the crab Chasmagnathus (1999) Neurobiol Learn Mem, 71, pp. 34-49
  • Pedreira, M.E., Maldonado, H., Protein synthesis subserves reconsolidation or extinction depending on reminder duration (2003) Neuron, 38, pp. 863-869
  • Pedreira, M.E., Pérez-Cuesta, L.M., Maldonado, H., Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: protein synthesis requirement and mediation by NMDA-type glutamatergic receptors (2002) J Neurosci, 22, pp. 8305-8311
  • Tano, M.C., Molina, V.A., Pedreira, M.E., The involvement of the GABAergic system in the formation and expression of the extinction memory in the crab Neohelice granulata (2013) Eur J Neurosci, 38, pp. 3302-3313
  • Sztarker, J., Tomsic, D., Brain modularity in arthropods: Individual neurons that support “what” but not “where” memories (2011) J Neurosci, 31, pp. 8175-8180
  • Tomsic, D., Romano, A., A multidisciplinary approach to learning and memory in the crab Neohelice (Chasmagnathus) granulata (2013), pp. 337-355. , Chapter 26: In: Invertebrate Learning and Memory. Eds: Menzel R. and Benjamin P.R. Handbook of Behavioral Neuroscience (Series Editor: Joe Huston, Düsseldorf, Germany). Elsevier/Academic Press; Tomsic, D., Maldonado: Neurobiology of Learning and Memory of Crustaceans (2014), pp. 509-534. , Chapter 19: In: Crustacean Nervous Systems and their Control of Behavior (third volume of a ten-volume set on The Natural History of Crustaceans). Eds: Derby C and Thiel M. Oxford University Press; Tomsic, D., Pedreira, M.E., Romano, A., Hermite, G., Maldonado, H., Context-US association as a determinant of long-term habituation in the crab Chasmagnathus (1998) Anim Learn Behav, 26, pp. 196-209
  • Liu, L., Wolf, R., Ernst, R., Heisenberg, M., Context generalization in Drosophila visual learning requires the mushroom bodies (1999) Nature, 400, pp. 753-756
  • Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., Heisenberg, M., Liu, L., Distinct memory traces for two visual features in the Drosophila brain (2006) Nature, 439, pp. 551-556
  • Fischbach, K.F., Dittrich, A.P.M., The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure (1989) Cell Tissue Res, 258, pp. 441-475
  • Otsuna, H., Ito, K., Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways (2006) J Comp Neurol, 497, pp. 928-958
  • Griffin, D.R., Animal Thinking (1985), Harvard University Press ISBN 0-674-03713-8; Brembs, B., Towards a scientific concept of free will as a biological trait: spontaneous actions and decision-making in invertebrates (2011) Proc R Soc B, 278, pp. 930-939
  • Haberkern, H., Jayaraman, V., Studying small brains to understand the building blocks of cognition (2016) Curr Opin Neurobiol, 37, pp. 59-65
  • Paulk, A.C., Stacey, J.A., Pearson, T.W.J., Taylor, G.J., Moore, R.J.D., Srinivasan, M.V., van Swinderen, B., Selective attention in the honeybee optic lobes precedes behavioral choices (2014) Proc Natl Acad Sci, 111, pp. 5006-5011
  • Webb, B., Cognition in insects (2012) Phil Trans R Soc B: Biol Sci, 367, pp. 2715-2722
  • Giurfa, M., Cognition with few neurons: higher-order learning in insects (2013) Trends Neurosci, 36, pp. 285-294
  • Wiederman, S.D., O'Carroll, D.C., Selective attention in an insect visual neuron (2013) Curr Biol, 23, pp. 156-161. , This study shows that when a dragonfly is presented with two moving object, its small target motion detector (STMD) neurons from the lobula track only one of them. The results are consistent with a selective attention effect detected at the level of individual neurons
  • Boles, L.C., Lohmann, K.J., True navigation and magnetic maps in spiny lobsters (2003) Nature, 421, pp. 60-63
  • Walls, M.L., Layne, J.E., Direct evidence for distance measurement via flexible stride integration in the fiddler crab (2009) Curr Biol, 19, pp. 25-29
  • Kahn, A.T., Dolstra, T., Jennions, M.D., Strategic male courtship effort varies in concert with adaptive shifts in female mating preferences (2013) Behav Ecol, 24, pp. 906-913
  • How, M.J., Hemmi, J.M., Courtship herding in the fiddler crab Uca elegans (2008) J Comp Physiol A, 194, pp. 1053-1061
  • Detto, T., Backwell, O.R., Hemmi, J.M., Zeil, J., Visually mediated species and neighbour recognition in fiddler crabs (Uca mjoebergi and Uca capricornis) (2006) Proc Biol Sci, 273, pp. 1661-1666
  • Issa, F.A., Drummond, J., Cattaert, D., Edwards, D.H., Neural circuit reconfiguration by social status (2012) J Neurosci, 32, pp. 5638-5645
  • Liden, W.H., Phillips, M.L., Herberholz, J., Neural control of behavioural choice in juvenile crayfish (2010) Proc Biol Sci, 277, pp. 3493-3500
  • Maimon, G., Modulation of visual physiology by behavioral state in monkeys, mice and flies (2012) Curr Opin Neurobiol, 21, pp. 1-6
  • Sztarker, J., Tomsic, D., Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations (2008) J Comp Physiol A, 194, pp. 587-596
  • Städele, C., Heigele, S., Stein, W., Neuromodulation to the rescue: compensation of temperature-induced breakdown of rhythmic motor patterns via extrinsic neuromodulatory input (2015) PLoS Biol, 13, p. e1002265

Citas:

---------- APA ----------
(2016) . Visual motion processing subserving behavior in crabs. Current Opinion in Neurobiology, 41, 113-121.
http://dx.doi.org/10.1016/j.conb.2016.09.003
---------- CHICAGO ----------
Tomsic, D. "Visual motion processing subserving behavior in crabs" . Current Opinion in Neurobiology 41 (2016) : 113-121.
http://dx.doi.org/10.1016/j.conb.2016.09.003
---------- MLA ----------
Tomsic, D. "Visual motion processing subserving behavior in crabs" . Current Opinion in Neurobiology, vol. 41, 2016, pp. 113-121.
http://dx.doi.org/10.1016/j.conb.2016.09.003
---------- VANCOUVER ----------
Tomsic, D. Visual motion processing subserving behavior in crabs. Curr. Opin. Neurobiol. 2016;41:113-121.
http://dx.doi.org/10.1016/j.conb.2016.09.003