Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In order to study the mechanisms regulating the phenanthrene degradation pathway and the intermediate-metabolite accumulation in strain S. paucimobilis 20006FA, we sequenced the genome and compared the genome-based predictions to experimental proteomic analyses. Physiological studies indicated that the degradation involved the salicylate and protocatechuate pathways, reaching 56.3% after 15 days. Furthermore, the strain degraded other polycyclic aromatic hydrocarbons (PAH) such as anthracene (13.1%), dibenzothiophene (76.3%), and fluoranthene. The intermediate metabolite 1-hydroxy-2-naphthoic acid (HNA) accumulated during phenanthrene catabolism and inhibited both bacterial growth and phenanthrene degradation, but exogenous-HNA addition did not affect further degradation. Genomic analysis predicted 126 putative genes encoding enzymes for all the steps of phenanthrene degradation, which loci could also participate in the metabolism of other PAH. Proteomic analysis identified enzymes involved in 19 of the 23 steps needed for the transformation of phenanthrene to trichloroacetic-acid intermediates that were upregulated in phenanthrene cultures relative to the levels in glucose cultures. Moreover, the protein-induction pattern was temporal, varying between 24 and 96 h during phenanthrene degradation, with most catabolic proteins being overexpressed at 96 h—e. g., the biphenyl dioxygenase and a multispecies (2Fe–2S)-binding protein. These results provided the first clues about regulation of expression of phenanthrene degradative enzymes in strain 20006FA and enabled an elucidation of the metabolic pathway utilized by the bacterium. To our knowledge the present work represents the first investigation of genomic, proteomic, and physiological studies of a PAH-degrading Sphingomonas strain. © 2017, Springer Science+Business Media B.V., part of Springer Nature.

Registro:

Documento: Artículo
Título:Insights into the genome and proteome of Sphingomonas paucimobilis strain 20006FA involved in the regulation of polycyclic aromatic hydrocarbon degradation
Autor:Macchi, M.; Martinez, M.; Tauil, R.M.N.; Valacco, M.P.; Morelli, I.S.; Coppotelli, B.M.
Filiación:Laboratory of Microbial Degradation of Hydrocarbons, Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 No 227, La Plata, 1900, Argentina
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
IQUIBICEN, FCEN-UBA, Buenos Aires, Argentina
Palabras clave:Genomics; HNA accumulation; Phenanthrene pathway; Proteomics; Strain 20006FA; Anthracene; Aromatic compounds; Bacteria; Enzymes; Genes; Hydrocarbons; Metabolism; Metabolites; Molecular biology; Physiology; Polycyclic aromatic hydrocarbons; Proteins; Trichloroacetic acid; 1-Hydroxy-2-naphthoic acid; Genomics; HNA accumulation; Intermediate metabolites; Phenanthrene pathway; Polycyclic aromatic hydrocarbon (PAH); Proteomics; Sphingomonas paucimobilis; Aromatic hydrocarbons
Año:2018
Volumen:34
Número:1
DOI: http://dx.doi.org/10.1007/s11274-017-2391-6
Título revista:World Journal of Microbiology and Biotechnology
Título revista abreviado:World J. Microbiol. Biotechnol.
ISSN:09593993
CODEN:WJMBE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09593993_v34_n1_p_Macchi

Referencias:

  • Armengaud, J., Microbiology and proteomics, getting the best of both worlds! (2013) Environ Microbiol, 15 (1), pp. 12-23. , COI: 1:CAS:528:DC%2BC3sXjs1GjsA%3D%3D
  • Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Kubal, M., The RAST server: rapid annotations using subsystems technology (2008) BMC Genom, 9 (1), p. 75
  • Basta, T., Keck, A., Klein, J., Stolz, A., Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains (2004) J Bacteriol, 186 (12), pp. 3862-3872. , COI: 1:CAS:528:DC%2BD2cXkvFOrs7s%3D
  • Basta, T., Buerger, S., Stolz, A., Structural and replicative diversity of large plasmids from sphingomonads that degrade polycyclic aromatic compounds and xenobiotics (2005) Microbiology, 151, pp. 2025-2037. , COI: 1:CAS:528:DC%2BD2MXlslerurY%3D
  • Cavalca, L., Guerrieri, N., Colombo, M., Pagani, S., Andreoni, V., Enzymatic and genetic profiles in environmental strains grown on polycyclic aromatic hydrocarbons (2007) Antonie Van Leeuwenhoek, 91 (4), pp. 315-325. , COI: 1:CAS:528:DC%2BD2sXkslWgtrk%3D
  • Cerniglia, C., Yang, S., Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans (1984) Appl Environ Microbiol, 47, pp. 119-124. , COI: 1:CAS:528:DyaL2cXntlKguw%3D%3D
  • Cho, O., Choi, K.Y., Zylstra, G.J., Kim, Y.S., Kim, S.K., Lee, J.H., Sohn, H.Y., Kim, E., Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation (2005) Biochem Biophys Res Commun, 327 (3), pp. 656-662. , COI: 1:CAS:528:DC%2BD2MXksFCrtg%3D%3D
  • Coppotelli, B.M., Ibarrolaza, A., Del Panno, M.T., Morelli, I.S., Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community and biodegradation in phenanthrene-contaminated soil (2008) Microb Ecol, 55 (2), pp. 173-183. , COI: 1:CAS:528:DC%2BD1cXht1ShsL8%3D
  • Coppotelli, B.M., Ibarrolaza, A., Dias, R.L., Del Panno, M.T., Berthe-Corti, L., Morelli, I.S., Study of the degradation activity and the strategies to promote the bioavailability of phenanthrene by Sphingomonas paucimobilis strain 20006FA (2010) Microb Ecol, 59, pp. 266-276. , COI: 1:CAS:528:DC%2BC3cXjtFWltr8%3D
  • Demaneche, S., Meyer, C., Micoud, J., Louwagie, M., Willison, J.C., Jouanneau, Y., Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a Sphingomonas strain that degrades various polycyclic aromatic hydrocarbons (2004) Appl Environ Microbiol, 70 (11), pp. 6714-6725. , COI: 1:CAS:528:DC%2BD2cXhtVSju7zF
  • Desai, A.M., Autenrieth, R.L., Dimitriou-Christidis, P., McDonald, T.J., Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505 (2008) Biodegradation, 19 (2), pp. 223-233. , COI: 1:CAS:528:DC%2BD1cXitl2jtLk%3D
  • Dong, C., Bai, X., Lai, Q., Xie, Y., Chen, X., Shao, Z., Draft Genome sequence of Sphingobium sp. strain C100, a polycyclic aromatic hydrocarbon-degrading bacterium from the deep-sea sediment of the Arctic Ocean (2014) Genome Announc, 2 (1), pp. e01210-e01213
  • Favaloro, B., Tamburro, A., Trofino, M., Bologna, L., Rotilio, D., Heipieper, H., Modulation of the glutathione S-transferase in Ochrobactrum anthropi: function of xenobiotic substrates and other forms of stress (2000) Biochem J, 346 (2), pp. 553-559. , COI: 1:CAS:528:DC%2BD3cXhvFSiur4%3D
  • Fernandez, S., Shingler, V., De Lorenzo, V., Cross-regulation by XylR and DmpR activators of Pseudomonas putida suggests that transcriptional control of biodegradative operons evolves independently of catabolic genes (1994) J Bacteriol, 176 (16), pp. 5052-5058. , COI: 1:CAS:528:DyaK2cXlsFSnt70%3D
  • Fernandez-Luqueno, F., Valenzuela-Encinas, C., Marsch, R., Martinez-Suarez, C., Vazquez-Nunez, E., Dendooven, L., Microbial communities to mitigate contamination of PAHs in soil-possibilities and challenges: a review (2011) Environ Sci Pollut Res Int, 18 (1), pp. 12-30. , COI: 1:CAS:528:DC%2BC3MXisVOguw%3D%3D
  • Festa, S., Coppotelli, B.M., Madueño, L., Loviso, C.L., Macchi, M., Tauil, R.M.N., Valacco, M.P., Morelli, I.S., Assigning ecological roles to the populations belonging to a phenanthrene-degrading bacterial consortium using omic approaches (2017) PLoS ONE, 12 (9)
  • Fialho, A.M., Moreira, L.M., Granja, A.T., Popescu, A.O., Hoffmann, K., Sa-Correia, I., Occurrence, production, and applications of gellan: current state and perspectives (2008) Appl Microbiol Biotechnol, 79 (6), pp. 889-900. , COI: 1:CAS:528:DC%2BD1cXnslKgtr8%3D
  • Fulekar, M., Sharma, J., Bioinformatics applied in bioremediation (2008) Innov Rom Food Biotechnol, 3, p. 28. , COI: 1:CAS:528:DC%2BC3cXmtlGjug%3D%3D
  • Gibson, D.T., Microbial degradation of aromatic hydrocabons (1984) Microb Degrad Org Compd, 31, pp. 181-252
  • Johnsen, A.R., Karlson, U., PAH degradation capacity of soil microbial communities–does it depend on PAH exposure? (2005) Microb Ecol, 50 (4), pp. 488-495. , COI: 1:CAS:528:DC%2BD2MXhtlCrt7fE
  • Jouanneau, Y., Micoud, J., Meyer, C., Purification and characterization of a three-component salicylate 1-hydroxylase from Sphingomonas sp. strain CHY-1 (2007) Appl Environ Microbiol, 73 (23), pp. 7515-7521. , COI: 1:CAS:528:DC%2BD2sXhsVeisL%2FE
  • Khara, P., Roy, M., Chakraborty, J., Ghosal, D., Dutta, T.K., Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp (2014) PNB FEBS Open Bio, 4, pp. 290-300. , COI: 1:CAS:528:DC%2BC2cXht1ynu7rO
  • Pao, S.S., Paulsen, I.T., Saier, M.H., Major facilitator superfamily (1998) Microbiol Mol Biol Rev, 62 (1), pp. 1-34. , COI: 1:CAS:528:DyaK1cXitF2jsLg%3D
  • Peng, R.H., Xiong, A.S., Xue, Y., Fu, X.Y., Gao, F., Zhao, W., Tian, Y.S., Yao, Q.H., Microbial biodegradation of polyaromatic hydrocarbons (2008) FEMS Microbiol Rev, 32 (6), pp. 927-955. , COI: 1:CAS:528:DC%2BD1cXhtlGlsbnN
  • Perez Vidakovics, M.L., Paba, J., Lamberti, Y., Ricart, C.A., Valle de Sousa, M., Rodriguez, M.E., Profiling the Bordetella pertussis proteome during iron starvation (2007) J Proteome Res, 6 (7), pp. 2518-2528. , COI: 1:CAS:528:DC%2BD2sXls1Kqsbc%3D
  • Pieper, D.H., Reineke, W., Engineering bacteria for bioremediation (2000) Curr Opin Biotechnol, 11 (3), pp. 262-270. , COI: 1:CAS:528:DC%2BD3cXksVGks7o%3D
  • Romine, M.F., Stillwell, L.C., Wong, K.-K., Thurston, S.J., Sisk, E.C., Sensen, C., Gaasterland, T., Saffer, J.D., Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199 (1999) J Bacteriol, 181 (5), pp. 1585-1602. , COI: 1:CAS:528:DyaK1MXhslWrtLg%3D
  • Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.-A., Barrell, B., Artemis: sequence visualization and annotation (2000) Bioinformatics, 16, pp. 944-945. , COI: 1:CAS:528:DC%2BD3MXjvVWksw%3D%3D
  • Sanchez, J.-C., Hochstrasser, D., Rabilloud, T., In-gel sample rehydration of immobilized pH gradient (1999) 2-D proteome analysis protocols, pp. 221-225. , Link AJ, (ed), Humana Press, Totowa
  • Stolz, A., Molecular characteristics of xenobiotic-degrading sphingomonads (2009) Appl Microbiol Biotechnol, 81 (5), pp. 793-811. , COI: 1:CAS:528:DC%2BD1cXhsFart77F
  • Story, S., Kline, E., Hughes, T., Riley, M., Hayasaka, S., Degradation of aromatic hydrocarbons by Sphingomonas paucimobilis strain EPA505 (2004) Arch Environ Contam Toxicol, 47 (2), pp. 168-176. , COI: 1:CAS:528:DC%2BD2cXmsVClsrg%3D
  • Tritt, A., Eisen, J.A., Facciotti, M.T., Darling, A.E., An integrated pipeline for de novo assembly of microbial genomes (2012) PLoS ONE, 7. , COI: 1:CAS:528:DC%2BC38XhsVSjtL%2FK
  • Vandermeer, K.D., Daugulis, A.J., Enhanced degradation of a mixture of polycyclic aromatic hydrocarbons by a defined microbial consortium in a two-phase partitioning bioreactor (2007) Biodegradation, 18 (2), pp. 211-221. , COI: 1:CAS:528:DC%2BD2sXitlCltLg%3D
  • Vandermeersch, G., Lourenco, H.M., Alvarez-Munoz, D., Cunha, S., Diogene, J., Cano-Sancho, G., Sloth, J.J., Robbens, J., Environmental contaminants of emerging concern in seafood—European database on contaminant levels (2015) Environ Res, 143, pp. 29-45. , COI: 1:CAS:528:DC%2BC2MXhtVyiu7%2FN
  • Waigi, M.G., Kang, F., Goikavi, C., Ling, W., Gao, Y., Phenanthrene biodegradation by sphingomonads and its application in the contaminated soils and sediments: a review (2015) Int Biodeterior Biodegrad, 104, pp. 333-349. , COI: 1:CAS:528:DC%2BC2MXhtFylsbzE
  • Xia, Y., Min, H., Rao, G., Lv, Z.-M., Liu, J., Ye, Y.-F., Duan, X.-J., Isolation and characterization of phenanthrene-degrading Sphingomonas paucimobilis strain ZX4 (2005) Biodegradation, 16 (5), pp. 393-402. , COI: 1:CAS:528:DC%2BD2MXhsF2mu78%3D
  • Yuan, S.Y., Wei, S.H., Chang, B.V., Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture (2000) Chemosphere, 41 (9), pp. 1463-1468. , COI: 1:CAS:528:DC%2BD3cXktlOitL8%3D
  • Zafra, G., Absalón, Á.E., Anducho-Reyes, M., Fernandez, F.J., Cortés-Espinosa, D.V., Construction of PAH-degrading mixed microbial consortia by induced selection in soil (2017) Chemosphere, 172, pp. 120-126. , COI: 1:CAS:528:DC%2BC2sXjvFyqtA%3D%3D
  • Zhang, H., Wang, D.Z., Xie, Z.X., Zhang, S.F., Wang, M.H., Lin, L., Comparative proteomics reveals highly and differentially expressed proteins in field-collected and laboratory-cultured blooming cells of the diatom Skeletonema costatum (2015) Environ Microbiol, 17, pp. 3976-3991. , COI: 1:CAS:528:DC%2BC2MXhslCltbrP
  • Zhao, H.P., Wang, L., Ren, J.R., Li, Z., Li, M., Gao, H.W., Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5 (2008) J Hazard Mater, 152 (3), pp. 1293-1300. , COI: 1:CAS:528:DC%2BD1cXjt12mu7k%3D
  • Zhao, Q., Hu, H., Wang, W., Peng, H., Zhang, X., Genome sequence of Sphingobium yanoikuyae B1, a polycyclic aromatic hydrocarbon-degrading strain (2015) Genome Announc, 3 (1), p. e01522
  • Zhao, Q., Yue, S., Bilal, M., Hu, H., Wang, W., Zhang, X., Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer (2017) Sci Total Environ, 609, pp. 1238-1247. , COI: 1:CAS:528:DC%2BC2sXht12ls7vL

Citas:

---------- APA ----------
Macchi, M., Martinez, M., Tauil, R.M.N., Valacco, M.P., Morelli, I.S. & Coppotelli, B.M. (2018) . Insights into the genome and proteome of Sphingomonas paucimobilis strain 20006FA involved in the regulation of polycyclic aromatic hydrocarbon degradation. World Journal of Microbiology and Biotechnology, 34(1).
http://dx.doi.org/10.1007/s11274-017-2391-6
---------- CHICAGO ----------
Macchi, M., Martinez, M., Tauil, R.M.N., Valacco, M.P., Morelli, I.S., Coppotelli, B.M. "Insights into the genome and proteome of Sphingomonas paucimobilis strain 20006FA involved in the regulation of polycyclic aromatic hydrocarbon degradation" . World Journal of Microbiology and Biotechnology 34, no. 1 (2018).
http://dx.doi.org/10.1007/s11274-017-2391-6
---------- MLA ----------
Macchi, M., Martinez, M., Tauil, R.M.N., Valacco, M.P., Morelli, I.S., Coppotelli, B.M. "Insights into the genome and proteome of Sphingomonas paucimobilis strain 20006FA involved in the regulation of polycyclic aromatic hydrocarbon degradation" . World Journal of Microbiology and Biotechnology, vol. 34, no. 1, 2018.
http://dx.doi.org/10.1007/s11274-017-2391-6
---------- VANCOUVER ----------
Macchi, M., Martinez, M., Tauil, R.M.N., Valacco, M.P., Morelli, I.S., Coppotelli, B.M. Insights into the genome and proteome of Sphingomonas paucimobilis strain 20006FA involved in the regulation of polycyclic aromatic hydrocarbon degradation. World J. Microbiol. Biotechnol. 2018;34(1).
http://dx.doi.org/10.1007/s11274-017-2391-6