Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The interactions of crude oil, with soils having different clay and water contents were studied as a function of time, as a contribution to the understanding of the influence that sorption and desorption effects might have in the efficiency and effectiveness of the remediation techniques. Characteristic Patagonian soils have low amounts of organic matter, (usually less than 1%), and high clay contents; therefore, they are convenient media to study the influence of clay in sorption, avoiding interactions with organic matter. It was found that addition of clays to the soil changed the rate and extent of the interactions and favored the sorption; linear sorption uptake isotherms were observed. The partition coefficients, Kd, of the different samples are correlated with the clay and water contents in the soil, were the multiparametric equation obtained had a satisfactory predictive value. On the other hand, the data obtained with the different oil fractions are consistent with competitive interactions of the different types of chemical species for accessing to active sites. To evaluate the model, similar studies were carried out with simulated samples of known chemical composition. In spite of the complexity of the oil system, results obtained with the simulated samples were consistent with the sorption model. The parameters determined are useful for the design of remediation techniques. © 2000 Taylor & Francis Group, LLC.

Registro:

Documento: Artículo
Título:Interactions between crude oil and patagonian soil as a function of the soil clay-water content
Autor:Nudelman, N.S.; Rios, S.M.; Katusich, O.
Filiación:Department of Organic Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab II. Ciudad Universitaria, Buenos Aires, 1428, Argentina
Department of Chemistry, Universidad National de la Patagonia San Juan Bosco, Ciudad Universitaria km4. Comodoro Rivadavia, Chubut, 9004, Argentina
Palabras clave:Hydrophobic contaminants; Oil; Patagonian soil; Petroleum exploitation; Soil remediation; Sorption; petroleum; adsorption; Argentina; article; clay; desorption; partition coefficient; soil; water content
Año:2000
Volumen:21
Número:4
Página de inicio:437
Página de fin:445
DOI: http://dx.doi.org/10.1080/09593332108618105
Título revista:Environmental Technology (United Kingdom)
Título revista abreviado:Environ. Technol.
ISSN:09593330
CAS:petroleum, 8002-05-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09593330_v21_n4_p437_Nudelman

Referencias:

  • Shields, W., Brown, S., (1986) Petroleum Contaminated Soils, 1, pp. 87-104. , Kostecki P., Calabrese. Ed. Lewis Publishers., New York
  • Xing, B., McGill, W.B., Dūdas, M.J., Cross-correlation of polarity curves to predict partition coefficients of nonionic organic contaminants (1994) Environ. Sci. Technol, 28, pp. 1929-1933
  • Haderlein, S.B., Schwarzenbach, R.P., Adsorption of substituted nitrobenzenes and nitrophenols to mineral surfaces (1993) Environ. Sci. Technol, 27, pp. 316-319
  • Comelissen, G., Van Noort, P., Parsons, J.R., Govers, H.A.J., Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments (1997) Environ. Sci. Technol, 31, pp. 454-460
  • Karimi-Lotfabad, S., Pickard, M., Gray, M., Reactions of polynuclear aromatic hydrocarbons on soil (1996) Environ. Sci. Technol., 30, pp. 1145-1151
  • Huang, W., Weber, W., A Distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains (1997) Environ. Sci. Technol., 31, pp. 2562-2569
  • Weber, W., Huang, W., A Distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions (1996) Environ. Sci. Technol, 30, pp. 881-888
  • Magee, B., Lemley, A., Lion, L., (1986) Petroleum Contaminated Soils, 2, pp. 157-175. , (2nd edn.), Kostecki P., Calabrese. New York
  • Stumm, W., (1992) Chemistry of the Solid-Water Interface, pp. 138-142. , Wiley-Interscience, New York
  • Lane, W., Loehr, R., Estimating the equilibrium aqueous concentrations of polynuclear aromatic hydrocarbons in complex mixtures (1992) Environ. Sci. Technol., 26, pp. 983-990
  • Rios, S., Mas, M., Senz, A., Garcia, N., Evaluation of the thermal and photochemical degradative fate of chlorophenolic pollutants employing numerical simulation (1995) Toxicol. Environ. Chem., 51, pp. 169-174
  • Nudelman, M.A., Carro, C., Nudelman, N.S., Effects of tin (IV) chloride and of organotin compounds on aquatic microorganisms (1997) Appl. Organometal. Chem, 12, pp. 67-75
  • Graber, E.R., Borisover, M.D., Evaluation of the Glassy/Rubbery Model for Soil Organic Matter (1998) Environ. Sci. Technol., 32, pp. 3286-3292. , (b) 'Methods of Soil Analysis, Part 1 and 2', American Society of Agronomy and Soil Science Society of America, 1982
  • (1985) Methods of Soil Analysis, Part I and 2, , American Society of Agronomy and Soil Science Society of America, Publisher Madison, Wisconsin
  • Valsaraj, K., Thibodeaux, L., (1992) Fate of Pesticides and Chemicals in the Environment, pp. 162-164. , Wiley & Sons, New York
  • Unger, D., Lam, C., Schaefer, C., Kosson, D., Predicting the effect of moisture on vapor-phase sorption of volatile organic compounds to soil (1996) Environ. Sci. Technol, 30, pp. 1081-1091
  • Yong, T.M., Mohamed, A., Warkentin, B., (1992) Principles of Contaminant Transport in Soils, Elsevier, pp. 253-255
  • Pignatello, J., Xing, B., Mechanisms of slow sorption of organic chemicals to natural particles (1996) Environ. Sci. Technol., 30, pp. 1-11
  • Hinedi, Z.R., Chang, A.C., Borchart, D.B., Probing the association of fluorobenzene with dissolved organic matter using NMR spectroscopy (1997) Water Res., 31, p. 877
  • Young, T.M., Weber, W.J., A Distributed reactivity model for sorption by soils and sediments. 3. Effects of diagenetic process on sorption energetics (1995) J. Environ. Sci. Technol, 29, pp. 92-97
  • Xing, B., Pignatello, J.J., Dual-Mode sorption of low-polarity compounds in glassy poly(Vinyl chloride) and soil organic matter (1997) Environ. Sci. Technol., 31, pp. 792-799
  • Lebouef, E.J., Weber, W.J., Jr., A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: Discovery of humic acid glass transition and an argument for a polymer-based model (1997) Environ. Sci. Technol, 31, pp. 1697-1705
  • Huang, W., Young, T.M., Schlautman, M.A., Yu, H., Weber, W.J., Jr., A distributed reactivity model for sorption by soils and sediments. 9. General isotherm nonlinearity and applicability of the dual reactive domain model (1997) Environ. Sci. Technol, 31, pp. 1703-1710
  • Chiou, C., Kile, D., Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations (1998) Environ. Sci. Technol, 32, pp. 338-343
  • Nielsen, T., Siigur, K., Helweg, C., Jorgensen, O., Hansen, P.E., Kirso, U., Sorption of polycyclic aromatic compounds to humic acid as studied by high- performance liquid chromatography (1997) Environ. Sci. Technol, 31, pp. 1102-1108
  • Kopinke, F.-D., Porschmann, J., Stottmeister, U., Sorption of organic pollutants on anthropogenic humic matter (1995) Environ. Sci. Technol, 29, pp. 941-945
  • Graber, E.R., Borisover, M.D., Hydration-facilitated sorption of specifically interacting organic compounds by model soilorganic matter (1998) Environ. Sci. Technol., 32, pp. 258-262
  • Rutherford, D.W., Chiou, C.T., Influence of soil organic matter composition on the partition of organic compounds (1992) Environ. Sci. Technol, 26, pp. 336-340
  • Goss, K.U., Effects of temperature and relative humidity on the sorption of organic vapors on quartz sand (1992) Environ. Sri. Technol, 26, pp. 2287-2292
  • Graber, E.R., Wefer-Roehl, A., Borisover, M.D., Nativ, R., Adar, E., (1998) EOS Trans. Amer. Geophys. Union., , S97, H31C
  • Nzengung, V., Voundrias, E., Nkedi-Kizza, P., Wampler, J., Weaver, C., Organic cosolvent effects on sorption equilibrium of hydrophobic organic chemicals by organoclays (1996) Environ. Sci. Technol, 30, pp. 89-96
  • Rhykerd, R., Weaver, R., McLnnes, K., Influence of salinity on bioremediation of oil in soil (1995) Environ. Pollut., 90, pp. 127-130

Citas:

---------- APA ----------
Nudelman, N.S., Rios, S.M. & Katusich, O. (2000) . Interactions between crude oil and patagonian soil as a function of the soil clay-water content. Environmental Technology (United Kingdom), 21(4), 437-445.
http://dx.doi.org/10.1080/09593332108618105
---------- CHICAGO ----------
Nudelman, N.S., Rios, S.M., Katusich, O. "Interactions between crude oil and patagonian soil as a function of the soil clay-water content" . Environmental Technology (United Kingdom) 21, no. 4 (2000) : 437-445.
http://dx.doi.org/10.1080/09593332108618105
---------- MLA ----------
Nudelman, N.S., Rios, S.M., Katusich, O. "Interactions between crude oil and patagonian soil as a function of the soil clay-water content" . Environmental Technology (United Kingdom), vol. 21, no. 4, 2000, pp. 437-445.
http://dx.doi.org/10.1080/09593332108618105
---------- VANCOUVER ----------
Nudelman, N.S., Rios, S.M., Katusich, O. Interactions between crude oil and patagonian soil as a function of the soil clay-water content. Environ. Technol. 2000;21(4):437-445.
http://dx.doi.org/10.1080/09593332108618105