Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Manganese-doped CdS/ZnS quantum dots have been used as energy donors in a Förster-like resonance energy transfer (FRET) process to enhance the effective lifetime of organic fluorophores. It was possible to tune the effective lifetime of the fluorophores by about six orders of magnitude from the nanosecond (ns) up to the millisecond (ms) region. Undoped and Mn-doped CdS/ZnS quantum dots functionalized with different dye molecules were selected as a model system for investigating the multiple energy transfer process and the specific interaction between Mn ions and the attached dye molecules. While the lifetime of the free dye molecules was about 5 ns, their linking to undoped CdS/ZnS quantum dots led to a long effective lifetime of about 150 ns, following a non-exponential transient. Manganese-doped core-shell quantum dots further enhanced the long-lasting decay time of the dye to several ms. This opens up a pathway to analyse different fluorophores in the time domain with equal spectral emissions. Such lifetime multiplexing would be an interesting alternative to the commonly used spectral multiplexing in fluorescence detection schemes. © 2016 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Förster resonance energy transfer mediated enhancement of the fluorescence lifetime of organic fluorophores to the millisecond range by coupling to Mn-doped CdS/ZnS quantum dots
Autor:Kaiser, U.; Sabir, N.; Carrillo-Carrion, C.; Del Pino, P.; Bossi, M.; Heimbrodt, W.; Parak, W.J.
Filiación:Department of Physics and Material Sciences Center (WZMW), Philipps-University Marburg, Renthof 5, Marburg, D-35032, Germany
CIC BiomaGUNE, Paseo de Miramón 182, Donostia - San Sebastián, 20009, Spain
CONICET, Piso3, Ciudad Universitaria, Pabellón 2, Buenos Aires, Argentina
Palabras clave:energy transfer; quantum dots; time-resolved fluorescence; Cadmium sulfide; Energy transfer; Fluorescence; Manganese; Molecules; Multiplexing; Nanocrystals; Semiconductor quantum dots; Core-shell quantum dots; Energy transfer process; Fluorescence detection; Fluorescence lifetimes; Resonance energy transfer; Specific interaction; Spectral multiplexing; Time-resolved fluorescence; Fluorophores
Año:2015
Volumen:27
Número:5
DOI: http://dx.doi.org/10.1088/0957-4484/27/5/055101
Título revista:Nanotechnology
Título revista abreviado:Nanotechnology
ISSN:09574484
CODEN:NNOTE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09574484_v27_n5_p_Kaiser

Referencias:

  • Hötzer, B., Medintz, I.L., Hildebrandt, N., Fluorescence in nanobiotechnology: Sophisticated fluorophores for novel applications (2012) Small, 8, pp. 2297-2326. , 2297-326
  • Wegner, K.D., Hildebrandt, N., Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors (2015) Chem. Soc. Rev., 44, pp. 4792-4834. , 4792-834
  • Jennings, T.L., Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis (2011) ACS Nano, 5, pp. 5579-5593. , 5579-93
  • Jezek, P., Mahdi, F., Garlid, K.D., Reconstitution of the beef-heart and rat-liver mitochondrial K+/H+ (Na+/H+) antiporter - Quantitation of K+ transport with the novel fluorescent-probe, Pbfi (1990) J. Biol. Chem., 265, pp. 10522-10526. , Reconstitution of the beef-heart and rat-liver mitochondrial K+/H+ (Na+/H+) antiportermdash;quantitation of K+ transport with the novel fluorescent-probe, Pbfi 10522-6
  • Graefe, A., Stanca, S.E., Nietzsche, S., Kubicova, L., Beckert, R., Biskup, C., Mohr, G.J., Development and critical evaluation of fluorescent chloride nanosensors (2008) Anal. Chem., 80, pp. 6526-6531. , 6526-31
  • Abbasi, A.Z., How colloidal nanoparticles could facilitate multiplexed measurements of different analytes with analyte-sensitive organic fluorophores (2011) ACS Nano, 5, pp. 21-25. , 21-5
  • Berezin, M.Y., Achilefu, S., Fluorescence lifetime measurements and biological imaging (2010) Chem. Rev., 110, pp. 2641-2684. , 2641-84
  • Masters, B.R., So, P.T., Gratton, E., Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin Biophys. J., 72, pp. 2405-2412. , 2405-12
  • Geißler, D., Linden, S., Liermann, K., Wegner, K.D., Charbonnière, L.J., Hildebrandt, N., Lanthanides and quantum dots as förster resonance energy transfer agents for diagnostics and cellular imaging (2014) Inorg. Chem., 53, pp. 1824-1838. , 1824-38
  • Hildebrandt, N., Wegner, K.D., Algar, W.R., Luminescent terbium complexes: Superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing (2014) Coord. Chem. Rev., 273, pp. 125-138. , 125-38
  • Gill, R., Willner, I., Shweky, I., Banin, U., Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: Probing hybridization and DNA cleavage (2005) J. Phys. Chem., 109, pp. 23715-23719. , 23715-9
  • Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing (2005) Nat. Mater., 4, pp. 435-446. , 435-46
  • Kaiser, U., Aberasturi, D.J.D., Malinowski, R., Amin, F., Parak, W.J., Heimbrodt, W., Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots (2014) Appl. Phys. Lett., 104, pp. 41901-41904. , 41901-4
  • Busse, W., Gumlich, H.E., Meissner, B., Theis, D., Time resolved spectroscopy of ZnS: Mn by dye laser technique (1976) J. Lumin., 12-13, pp. 693-700. , 693-700
  • De Mello Donegá, C., Bol, A.A., Meijerink, A., Time-resolved luminescence of ZnS:Mn2+ nanocrystals (2002) J. Lumin., 96, pp. 87-93. , Time-resolved luminescence of ZnS:Mn2+ nanocrystals 87-93
  • Yu, W.W., Peng, X., Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers (2002) Angew. Chem. Int. Ed., 41, pp. 2368-2371. , 2368-71
  • Chen, H.Y., Maiti, S., Son, D.H., Doping location-dependent energy transfer dynamics in Mn-doped CdS/ZnS nanocrystals (2012) ACS Nano, 6, pp. 583-591. , 583-91
  • Chen, O., Shelby, D.E., Yang, Y., Zhuang, J., Wang, T., Niu, C., Omenetto, N., Cao, Y.C., Excitation-intensity-dependent color-tunable dual emissions from manganese-doped CdS/ZnS core/shell nanocrystals (2010) Angew. Chem. Int. Ed., 49, pp. 10132-10135. , 10132-5
  • Yang, Y., Chen, O., Angerhofer, A., Cao, Y.C., On doping CdS/ZnS core/shell nanocrystals with Mn (2008) J. Am. Chem. Soc., 130, pp. 15649-15661. , 15649-61
  • Lin, C.-A.J., Sperling, R.A., Li, J.K., Yang, T.-Y., Li, P.-Y., Zanella, M., Chang, W.H., Parak, W.J., Design of an amphiphilic polymer for nanoparticle coating and functionalization (2008) Small, 4, pp. 334-341. , 334-41
  • Zhang, F., Lees, E., Amin, F., Rivera-Gil, P., Yang, F., Mulvaney, P., Parak, W.J., Polymer-coated nanoparticles: A universal tool for biolabelling experiments (2011) Small, 7, pp. 3113-3127. , 3113-27
  • Fernández-Argüelles, M.T., Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes (2007) Nano Lett., 7, pp. 2613-2617. , 2613-7
  • Kaiser, U., Aberasturi, D.J.D., Vazquez-Gonzalez, M., Carrillo-Carrion, C., Niebling, T., Parak, W.J., Heimbrodt, W., Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies (2015) J. Appl. Phys., 117
  • Yu, W.W., Qu, L., Guo, W., Peng, X., Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals (2003) Chem. Mater., 15, pp. 2854-2860. , 2854-60
  • Yang, Y., Chen, O., Angerhofer, A., Cao, Y.C., Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals (2006) J. Am. Chem. Soc., 128, pp. 12428-12429. , 12428-9
  • Labiadh, H., Ben Chaabane, T., Piatkowski, D., Mackowski, S., Lalevee, J., Ghanbaja, J., Aldeek, F., Schneider, R., Aqueous route to color-tunable Mn-doped ZnS quantum dots (2013) Mater. Chem. Phys., 140, pp. 674-682. , 674-82
  • Norris, D.J., Efros, A.L., Erwin, S.C., Doped nanocrystals (2008) Science, 319, pp. 1776-1779. , 1776-9
  • Norris, D.J., Yao, N., Charnock, F.T., Kennedy, T.A., High-quality manganese-doped ZnSe nanocrystals (2001) Nano Lett., 1, pp. 3-7. , 3-7
  • Zu, L.J., Norris, D.J., Kennedy, T.A., Erwin, S.C., Efros, A.L., Impact of ripening on manganese-doped ZnSe nanocrystals (2006) Nano Lett., 6, pp. 334-340. , 334-40
  • Erwin, S.C., Zu, L.J., Haftel, M.I., Efros, A.L., Kennedy, T.A., Norris, D.J., Doping semiconductor nanocrystals (2005) Nature, 436, pp. 91-94. , 91-4
  • Shim, M., Wang, C., Norris, D.J., Guyot-Sionnest, P., Doping and charging in colloidal semiconductor nanocrystals (2001) MRS Bull., 26, pp. 1005-1008. , 1005-8
  • Bawendi, M.G., Carroll, P.J., Wilson, W.L., Brus, L.E., Luminescence properties of CdSe quantum crystallites - Resonance between interior and surface Localized states (1992) J. Chem. Phys., 96, pp. 946-954. , 946-54
  • Goede, O., Heimbrodt, W., Optical properties of (Zn,Mn) and (Cd,Mn) chalcogenide mixed crystals and superlattices Phys. Status Solidi, 146, pp. 11-62. , Optical properties of (Zn,Mn) and (Cd,Mn) chalcogenide mixed crystals and superlattices 11-62
  • Dexter, D.L., A Theory of sensitized luminescence in solids (1953) J. Chem. Phys., 21, pp. 836-850. , 836-50
  • Forster, T., Experimentelle und theoretische untersuchung des zwischenmolekularen ubergangs von elektronenanregungsenergie (1949) J. Phys. Sci., 4, pp. 321-327. , 321-7
  • Kaiser, U., Chen, L., Geburt, S., Ronning, C., Heimbrodt, W., Defect induced changes on the excitation transfer dynamics in ZnS/Mn nanowires (2011) Nanoscale Res. Lett., 6, pp. 228-232. , 228-32
  • Gumlich, H.E., Electro- and photoluminescence properties of Mn2+ in ZnS and ZnCdS (1981) J. Lumin., 23, pp. 73-99. , Electro- and photoluminescence properties of Mn2+ in ZnS and ZnCdS 73-99
  • Goede, O., Heimbrodt, W., Thong, D.D., Non-exponential ZnS:Mn luminescence decay due to energy transfer (1984) Phys. Status Solidi, 126, pp. K159-K163. , K159-63
  • Cao, S., Li, C., Wang, L., Shang, M., Wei, G., Zheng, J., Yang, W., Long-lived and well-resolved Mn2+ Ion emissions in CuInS-ZnS quantum dots (2014) Sci. Rep., 4. , Long-lived and well-resolved Mn2+ Ion emissions in CuInS-ZnS quantum dots
  • Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T., Quantum dots versus organic dyes as fluorescent labels (2008) Nat. Methods, 5, p. 763
  • Van Der Meer, B.W., (2013) FRET - Förster Resonance Energy Transfer, pp. 23-62. , (Weinheim: Wiley) pp 23-62

Citas:

---------- APA ----------
Kaiser, U., Sabir, N., Carrillo-Carrion, C., Del Pino, P., Bossi, M., Heimbrodt, W. & Parak, W.J. (2015) . Förster resonance energy transfer mediated enhancement of the fluorescence lifetime of organic fluorophores to the millisecond range by coupling to Mn-doped CdS/ZnS quantum dots. Nanotechnology, 27(5).
http://dx.doi.org/10.1088/0957-4484/27/5/055101
---------- CHICAGO ----------
Kaiser, U., Sabir, N., Carrillo-Carrion, C., Del Pino, P., Bossi, M., Heimbrodt, W., et al. "Förster resonance energy transfer mediated enhancement of the fluorescence lifetime of organic fluorophores to the millisecond range by coupling to Mn-doped CdS/ZnS quantum dots" . Nanotechnology 27, no. 5 (2015).
http://dx.doi.org/10.1088/0957-4484/27/5/055101
---------- MLA ----------
Kaiser, U., Sabir, N., Carrillo-Carrion, C., Del Pino, P., Bossi, M., Heimbrodt, W., et al. "Förster resonance energy transfer mediated enhancement of the fluorescence lifetime of organic fluorophores to the millisecond range by coupling to Mn-doped CdS/ZnS quantum dots" . Nanotechnology, vol. 27, no. 5, 2015.
http://dx.doi.org/10.1088/0957-4484/27/5/055101
---------- VANCOUVER ----------
Kaiser, U., Sabir, N., Carrillo-Carrion, C., Del Pino, P., Bossi, M., Heimbrodt, W., et al. Förster resonance energy transfer mediated enhancement of the fluorescence lifetime of organic fluorophores to the millisecond range by coupling to Mn-doped CdS/ZnS quantum dots. Nanotechnology. 2015;27(5).
http://dx.doi.org/10.1088/0957-4484/27/5/055101