Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present a method for sizing metallic nanowires through the analysis of the extinction spectra of the scattered light when the wires are illuminated alternatively with p- and s-polarization waves. The method is applied to isolated silver nanowires in air or immersed in index matching oil. The dielectric function of silver is affected by the size of the cylinders, and its influence on the extinction spectra near the plasmon resonance or near the dip position is considered. Due to the size of the nanocylinders, it is necessary to include two different permittivities in the electromagnetic model to analyse the behaviour of the material under different polarization incidences. This introduces anisotropy in the system, which comprises isotropic cylinders. The behaviour of the extinction spectra for p-waves allows us to determine the wire radii, taking into account the plasmon peak position for radii larger than 7 nm, or alternatively, by using the contrast between maximum and minimum intensity near the plasmon frequency, for radii lower than 5 nm. For s-waves, although no plasmon peak appears, we can determine the radii by analysing the contrast between the ridge of the spectra near 260-275 nm and the minimum near 320-330 nm for radii larger than 10 nm, or analysing the slope in the spectra over 350 nm, for radii below 10 nm. The present study shows that spectral extinction is a very simple and inexpensive technique that can be useful for characterizing the radius of nanocylinders when electron microscopy (TEM or SEM) is not available. © IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Optical extinction spectroscopy used to characterize metallic nanowires
Autor:Scaffardi, L.B.; Lester, M.; Skigin, D.; Tocho, J.O.
Filiación:CIOp (CONICET, CIC), cc 124, 1900 La Plata, Argentina
Área Departamental de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
Instituto de Física Arroyo Seco, Facultad de Cs Exactas, UNICEN, Pinto 399, 7000, Tandil, Argentina
CONICET, Rivadavia 1917, Buenos Aires, Argentina
Grupo de Electromagnetismo Aplicado, Departamento de Física-FCEyN - UBA, Argentina
Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
Palabras clave:Electromagnetic model; Index matching oil; Optical extinction spectroscopy; Plasmon peak position; Polarization incidences; Light polarization; Light scattering; Permittivity; Spectroscopic analysis; Surface plasmon resonance; Transmission electron microscopy; Nanowires; metallic nanowire; nanowire; silver; unclassified drug; anisotropy; article; electromagnetic field; illumination; light scattering; P wave; polarization; priority journal; scanning electron microscopy; spectroscopy; transmission electron microscopy
Año:2007
Volumen:18
Número:31
DOI: http://dx.doi.org/10.1088/0957-4484/18/31/315402
Título revista:Nanotechnology
Título revista abreviado:Nanotechnology
ISSN:09574484
CODEN:NNOTE
CAS:silver, 7440-22-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09574484_v18_n31_p_Scaffardi

Referencias:

  • García-Vidal, F.J., Pitarke, J.M., Pendry, J.B., Silver-filled carbon nanotubes used as spectroscopic enhancers (1998) Phys. Rev., 58 (11), pp. 6783-6786
  • Gray, S.K., Kupka, T., Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders (2003) Phys. Rev., 68, p. 045415
  • Scaffardi, L.B., Pellegri, N., De Sanctis, O., Tocho, J.O., Sizing gold nanoparticles by optical extinction spectroscopy (2005) Nanotechnology, 16 (1), pp. 158-163
  • Scaffardi, L.B., Tocho, J.O., Size dependence of refractive index of gold nanoparticles (2006) Nanotechnology, 17 (5), pp. 1309-1315
  • Braun, E., Eichen, Y., Sivan, U., Ben-Yoseph, G., DNA-templated assembly and electrode attachment of a conducting silver wire (1998) Nature, 391 (6669), pp. 775-778
  • Weeber, J.C., Dereux, A., Girard, C., Creen, J.R., Goudonnet, J.P., Plasmon polaritons of metallic nanowires for controlling submicron propagation of light (1999) Phys. Rev., 60, pp. 9061-9068
  • Rayleigh, D.W., On the electromagnetic theory of light (1881) Phil. Mag. S.5, 12 (73), pp. 81-101
  • Wait, J.R., Scattering of a plane wave from a circular dielectric cylinder at oblique incidence (1955) Can. J. Phys., 33, pp. 189-195
  • Bohren, C.F., Huffman, D.R., (1998) Absorption and Scattering of Light by Small Particles
  • Lakhtakia, A., Scattering by an infinitely-long bianisotropic cylinder with electrically small, convex cross-section (1991) Opt. Commun., 80 (5-6), pp. 303-306
  • Yeh, C., Mei, K.K., (1980) Light Scattering by Irregularly Shaped Particles
  • Nieto-Vesperinas, M., Dainty, J.C., (1991) Scattering in Volumes and Surfaces
  • Nieto-Vesperinas, M., (1991) Scattering and Diffraction in Physical Optics
  • Madrazo, A., Nieto-Vesperinas, M., Scattering of electromagnetic waves from a cylinder in front of a conducting plane (1995) J. Opt. Soc. Am., 12 (6), pp. 1298-1309
  • Lester, M., Nieto-Vesperinas, M., Optical forces on microparticles in an evanescent laser field (1999) Opt. Lett., 26, pp. 936-938
  • Lester, M., Arias-González, J.R., Nieto-Vesperinas, M., Fundamentals and model of photonic-force microscopy (2001) Opt. Lett., 26 (10), pp. 707-709
  • Tsang, L., Chan, H., Pak, K., Backscattering enhancement of a two-dimensional random rough surface (three dimensional scattering) based on Monte Carlo simulations (1994) J. Opt. Soc. Am., 11 (2), pp. 711-715
  • Tran, P., Celli, V., Maradudin, A.A., Electromagnetic scattering from a two-dimensional, randomly rough, perfectly conducting surface: Iterative methods (1994) J. Opt. Soc. Am., 11 (5), pp. 1686-1689
  • Maradudin, A.A., Michel, T., Mc Gurn, A.R., Mendez, E.R., Enhanced backscattering of light from a random grating (1990) Ann. Phys., 203 (2), pp. 255-307
  • Sánchez-Gil, J.A., Nieto-Vesperinas, M., Light scattering from random rough dielectric surfaces (1991) J. Opt. Soc. Am., 8 (8), pp. 1270-1286
  • Arias-González De La Aleja, J.R., (2002) PhD Thesis
  • Van De Hulst, H.C., (1981) Light Scattering by Small Particles, p. 303
  • Lynch, D.W., Hunter, W.R., Comments on the optical constants of metals and an introduction to the data for several metals (1985) Handbook of Optical Constants of Solids, pp. 275-367
  • Leveque, G., Olson, C.G., Lynch, D.W., Reflectance spectra and dielectric functions for Ag in the region of interband transitions (1983) Phys. Rev., 27 (8), pp. 4654-4660
  • Winsemius, P., Van Kampen, F.F., Lengkeek, H.P., Van Went, C.G., Temperature dependence of the optical properties of Au, Ag and Cu (1976) J. Phys. F: Met. Phys., 6 (8), pp. 1583-1606
  • Kreibig, U., Electronic properties of small silver particles: The optical constants and their temperature dependence (1974) J. Phys. F: Met. Phys., 4 (7), pp. 999-1014
  • Kreibig, U., Von Fragstein, C., The limitation of electron mean free path in small silver particles (1969) Z. Phys., 224 (4), pp. 307-323
  • Granqvist, C.G., Hunderi, O., Optical properties of ultrafine gold particles (1977) Phys. Rev., 16 (8), pp. 3513-3534
  • Oates, T.W.H., Real time spectroscopic ellipsometry of nanoparticles growth (2006) Appl. Phys. Lett., 88 (21), p. 213115
  • Barbic, M., Mock, J.J., Smith, D.R., Schultz, S., Single crystal silver nanowires prepared by the metal amplification method (2002) J. Appl. Phys., 91 (11), pp. 9341-9345
  • Schider, G., Krenn, J.R., Gotschy, W., Lamprecht, B., Ditlbacher, H., Leitner, A., Aussenegg, F.R., Optical properties of Ag and Au nanowires gratings (2001) J. Appl. Phys., 90 (8), pp. 3825-3830

Citas:

---------- APA ----------
Scaffardi, L.B., Lester, M., Skigin, D. & Tocho, J.O. (2007) . Optical extinction spectroscopy used to characterize metallic nanowires. Nanotechnology, 18(31).
http://dx.doi.org/10.1088/0957-4484/18/31/315402
---------- CHICAGO ----------
Scaffardi, L.B., Lester, M., Skigin, D., Tocho, J.O. "Optical extinction spectroscopy used to characterize metallic nanowires" . Nanotechnology 18, no. 31 (2007).
http://dx.doi.org/10.1088/0957-4484/18/31/315402
---------- MLA ----------
Scaffardi, L.B., Lester, M., Skigin, D., Tocho, J.O. "Optical extinction spectroscopy used to characterize metallic nanowires" . Nanotechnology, vol. 18, no. 31, 2007.
http://dx.doi.org/10.1088/0957-4484/18/31/315402
---------- VANCOUVER ----------
Scaffardi, L.B., Lester, M., Skigin, D., Tocho, J.O. Optical extinction spectroscopy used to characterize metallic nanowires. Nanotechnology. 2007;18(31).
http://dx.doi.org/10.1088/0957-4484/18/31/315402