Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The aim of this study was to analyze the possible utilization of flavanones obtained as by-products of the citrus industry, naringin (NAR), hesperidin (HES) and neohesperidin (NEO), to inhibit the production of aflatoxins (AFs) from Aspergillus flavus. Response Surface Methodology (RSM) was applied to optimize experimental conditions in terms of the different flavanones concentrations used. Through this methodology these optimal combinations were calculated: HES-NAR: 0.206-0.037 mM, HES-NEO: 0.156-0.283 mM and NAR-NEO: 0.035-0.195 mM. The theoretical concentrations obtained by RSM were assayed, achieving total inhibition of AFB1 and AFB2 production. Moreover, the use of these flavanones, obtained at low cost from the residues of citric industry, presents an interesting option for improving the profitability of these industries. © 2015 Published by Elsevier Ltd.

Registro:

Documento: Artículo
Título:Use of citrus flavanones to prevent aflatoxin contamination using response surface methodology
Autor:Salas, M.P.; Pok, P.S.; Resnik, S.L.; Pacin, A.; Munitz, M.
Filiación:Departamento de Química Orgánica e Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires, C1428EGA, Argentina
Facultad de Ingeniería, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires, C1428EGA, Argentina
Comisión de Investigaciones Científicas, Calle 526 entre 10 y 11, B1897, La Plata, Buenos Aires, Argentina
Fundación de Investigaciones Científicas Teresa Benedicta de la Cruz, Dorronzoro 141, B6700, Luján, Buenos Aires, Argentina
Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, Concordia, Argentina
Palabras clave:Aflatoxins; Aspergillus flavus; Flavanones; Response surface methodology
Año:2016
Volumen:60
Página de inicio:533
Página de fin:537
DOI: http://dx.doi.org/10.1016/j.foodcont.2015.08.026
Título revista:Food Control
Título revista abreviado:Food Control
ISSN:09567135
CODEN:FOOCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09567135_v60_n_p533_Salas

Referencias:

  • Alpsoy, L., Inhibitory effect of essential oil on aflatoxin activities (2010) African Journal of Biotechnology, 9 (17), pp. 2472-2481
  • Official method 990.33. Official methods of analysis of AOAC international (2012) Natural toxins, , Gaithersburg, Maryland, USA, G. Latimer (Ed.)
  • Bankole, S.A., Joda, A.O., Effect of lemon grass (Cymbopogon citratus Stapf) powder and essential oil on mould deterioration and aflatoxin contamination of melon seeds (Colocynthis citrullus L.) (2004) African Journal of Biotechnology, 3 (1), pp. 52-59
  • Bejarano Rodriguez, R.J., Centeno Briceño, S.J., Citrus limon extract for aflatoxin and aflatoxigenic fungi control in concentrated chicken feed produced in Venezuela (2009) Revista de la Sociedad Venezolana de Microbiología, 29, pp. 57-61
  • Benavente-García, O., Castillo, J., Update on uses and properties of citrus Flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity (2008) Journal of Agricultural and Food Chemistry, 45 (12), pp. 4505-4515
  • Cotty, P.J., Bayman, P., Egel, D.S., Elias, K.S., Agriculture, aflatoxins and Aspergillus (1994) The Genus Aspergillus, pp. 1-27. , Plenum Press, New York, USA, K.A. Powell (Ed.)
  • Dos Santos Oliveira, M., Badiale Furlong, E., Screening of antifungal and antimycotoxigenic activity of plant phenolic extracts (2008) World Mycotoxin Journal, 1 (2), pp. 139-146
  • (2010) Commission Regulation No 165/2010. Amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins, p. 5. , http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32010R0165, Official Journal of the European Union, L 50/8, of 26 February, Retrieved from
  • Esbensen, K.H., (2009) Multivariate data analysis - In practice, pp. 362-447. , CAMO, Oslo, Norway
  • (2004) Food and agriculture organization. Worldwide regulations for mycotoxins in food and feed in 2003, , http://www.fao.org/docrep/007/y5499e/y5499e00.HTM, FAO Food and Nutrition papers 81. Retrieved from
  • Gattuso, G., Barreca, D., Gargiulli, C., Leuzzi, U., Caristi, C., Flavonoid composition of citrus juices (2007) Molecules, 12 (8), pp. 1641-1673
  • Geronazzo, H., Robin, J., Blanco, S., Cuevas, C., Ellenrieder, G., (2000) Aprovechamiento integral de residuos de producción y procesamiento de pomelos. Un proyecto de innovación tecnológica. Anales del VIII Congreso Argentino de Ciencia y Tecnología de los Alimentos. Libro de Resúmenes, p. 119. , Asociación de Tecnólogos Alimentarios, Buenos Aires, Argentina
  • González-Gómez, D., Cardoso, V., Bohoyo, D., Ayuso, M.C., Delgado-Adamez, J., Application of experimental design and response surface methodology to optimize the procedure to obtain a bactericide and highly antioxidant aqueous extract from orange peels (2014) Food Control, 35 (1), pp. 252-259
  • Grum, J., Slabe, J.M., The use of factorial design and response surface methodology for fast determination of optimal heat treatment conditions of different Ni-Co-Mo surfaced layers (2004) Journal of Materials Processing Technology, 155, pp. 2026-2032
  • (2012) International agency for research on cancer, pp. 225-248. , http://monographs.iarc.fr/ENG/Monographs/vol100F/mono100F-23.pdf, Aflatoxins. IARC Monographs 100F, Retrieved from
  • Ibrahim, H.M., Elkhidir, E.E., Response surface method as an efficient tool for medium optimisation (2011) Trends in Applied Sciences Research, 6, pp. 121-129
  • (2007) Joint FAO/WHO expert committee on food Additives. Evaluation of certain food additives and contaminants, 68th report of the joint FAO/WHO expert committee on food Additives, , (WHO technical report series; no. 947)
  • Khan, M.K., Zill-E-Huma, Dangles, O., A comprehensive review on flavanones, the major citrus polyphenols (2014) Journal of Food Composition and Analysis, 33 (1), pp. 85-104
  • Klich, M.A., Aspergillus flavus: the major producer of Aflatoxins (2007) Molecular Plant Pathology, 8, pp. 713-722
  • Li, J., Ma, C., Ma, Y., Li, Y., Zhou, W., Xu, P., Medium optimisation by combination of response surface methodology and desirability function: an application in glutamine production (2007) Applied Microbiology and Biotechnology, 73, pp. 563-571
  • Macoritto, A., Geronazzo, H., Ellenrieder, G., Obtención de hesperidina a partir de naranjas de derrame (2001) Información Tecnológica, 12 (4), pp. 3-8
  • Macoritto, A., Robin, J., Blanco, S., Geronazzo, H., Obtención de flavonoides de frutas inmaduras de Citrus aurantium (2004) Innovación, 16, pp. 39-42
  • Mallozi, M.A.B., Correa, B., Haraguchi, M., Brignani Neto, F., Effect of flavonoids on Aspergillus flavus growth and aflatoxin production (1996) Revista de Microbiología, 27, pp. 161-165
  • (2002) MERCOSUR/GMC/RES. N° 25/02. Reglamento técnico MERCOSUR sobre límites máximos de aflatoxinas admisibles en leche, maní y maíz
  • Munitz, M.S., Garrido, C.E., Gonzalez, H.H.L., Resnik, S.L., Salas, M.P., Montti, M.I.T., Mycoflora and potential mycotoxin production of freshly harvested blueberry in Concordia, Entre Ríos province, Argentina (2013) International Journal of Fruit Science, 13, pp. 312-325
  • Munitz, M.S., Resnik, S.L., Pacin, A., Salas, M.P., Gonzalez, H.H.L., Montti, M.I.T., Mycotoxigenic potential of fungi isolated from freshly harvested Argentinean blueberries (2014) Mycotoxin Research, 4 (30), pp. 221-229
  • Norton, R.A., Inhibition of aflatoxin B1 biosynthesis in Aspergillus flavus by anthocyanidins and related flavonoids (1999) Journal of Agricultural and Food Chemistry, 47, pp. 1230-1235
  • Russo, M., Bonaccorsi, I., Inferrera, V., Dugo, P., Mondello, L., Underestimated sources of flavonoids, limonoids and dietary fiber: availability in orange's by-products (2015) Journal of Functional Foods, 12, pp. 150-157
  • Salas, M.P., Reynoso, C.M., Céliz, G., Daz, M., Resnik, S.L., Efficacy of flavanones obtained from citrus residues to prevent patulin contamination (2012) Food Research International, 48, pp. 930-934
  • Singh, P., Shukla, R., Kumar, A., Prakash, B., Singh, S., Dubey, N.K., Effect of Citrus reticulata and Cymbopogon citratus essential oils on Aspergillus flavus growth and aflatoxin production on Asparagus racemosus (2010) Mycopathologia, 170 (3), pp. 195-202
  • Velázquez-Nuñez, M.J., Avila-Sosa, R., Palou, E., López-Malo, A., Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition or vapor contact (2013) Food Control, 31 (1), pp. 1-4
  • Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., Pérez-Álvareza, J., Antifungal activity of lemon (Citrus limon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils (2008) Food Control, 19 (12), pp. 1130-1138

Citas:

---------- APA ----------
Salas, M.P., Pok, P.S., Resnik, S.L., Pacin, A. & Munitz, M. (2016) . Use of citrus flavanones to prevent aflatoxin contamination using response surface methodology. Food Control, 60, 533-537.
http://dx.doi.org/10.1016/j.foodcont.2015.08.026
---------- CHICAGO ----------
Salas, M.P., Pok, P.S., Resnik, S.L., Pacin, A., Munitz, M. "Use of citrus flavanones to prevent aflatoxin contamination using response surface methodology" . Food Control 60 (2016) : 533-537.
http://dx.doi.org/10.1016/j.foodcont.2015.08.026
---------- MLA ----------
Salas, M.P., Pok, P.S., Resnik, S.L., Pacin, A., Munitz, M. "Use of citrus flavanones to prevent aflatoxin contamination using response surface methodology" . Food Control, vol. 60, 2016, pp. 533-537.
http://dx.doi.org/10.1016/j.foodcont.2015.08.026
---------- VANCOUVER ----------
Salas, M.P., Pok, P.S., Resnik, S.L., Pacin, A., Munitz, M. Use of citrus flavanones to prevent aflatoxin contamination using response surface methodology. Food Control. 2016;60:533-537.
http://dx.doi.org/10.1016/j.foodcont.2015.08.026