Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Microbial fuel cells were rediscovered twenty years ago and now are a very active research area. The reasons behind this new activity are the relatively recent discovery of electrogenic or electroactive bacteria and the vision of two important practical applications, as wastewater treatment coupled with clean energy production and power supply systems for isolated low-power sensor devices. Although some analytical applications of MFCs were proposed earlier (as biochemical oxygen demand sensing) only lately a myriad of new uses of this technology are being presented by research groups around the world, which combine both biological-microbiological and electroanalytical expertises. This is the second part of a review of MFC applications in the area of analytical sciences. In Part I a general introduction to biological-based analytical methods including bioassays, biosensors, MFCs design, operating principles, as well as, perhaps the main and earlier presented application, the use as a BOD sensor was reviewed. In Part II, other proposed uses are presented and discussed. As other microbially based analytical systems, MFCs are satisfactory systems to measure and integrate complex parameters that are difficult or impossible to measure otherwise, such as water toxicity (where the toxic effect to aquatic organisms needed to be integrated). We explore here the methods proposed to measure toxicity, microbial metabolism, and, being of special interest to space exploration, life sensors. Also, some methods with higher specificity, proposed to detect a single analyte, are presented. Different possibilities to increase selectivity and sensitivity, by using molecular biology or other modern techniques are also discussed here. © 2014 Elsevier B.V.

Registro:

Documento: Artículo
Título:Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses
Autor:Abrevaya, X.C.; Sacco, N.J.; Bonetto, M.C.; Hilding-Ohlsson, A.; Cortón, E.
Filiación:Instituto de Astronomía y Física del Espacio (IAFE), UBA - CONICET, Ciudad Universitaria, Buenos Aires, Argentina
Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Univ. de Buenos Aires, Argentina
Ciudad Universitaria, Pabellon 2, Ciudad Autónoma de Buenos Aires 1428, Argentina
Palabras clave:Life sensor; Metabolic sensor; MFC; Review; Single analyte sensor; Toxicity; Biochemical oxygen demand; Electric power systems; Fuel cells; Metabolism; Molecular biology; Reviews; Space research; Toxicity; Wastewater treatment; Aquatic organisms; Biochemical oxygen demand; Electric power systems; Fuel cells; Metabolism; Molecular biology; Reviews; Space research; Toxicity; Wastewater treatment; Analytes; Analytical applications; Analytical science; MFC; Microbial activities; Microbial metabolism; Operating principles; Selectivity and sensitivity; Space explorations; Microbial fuel cells; Microbial fuel cells; analytic method; bioassay; biosensor; chemical analysis; chemical reaction kinetics; economic evaluation; electric power plant; electrochemical detection; environmental monitoring; environmental protection; equipment design; microbial activity; microbial fuel cell; microbial metabolism; microbial population dynamics; microbiological examination; microfluidics; microorganism detection; microtechnology; molecular biology; nonhuman; review; sensitivity and specificity; single analyte sensor; toxicity microbial biosensor; transducer; water quality; bioenergy; device failure analysis; devices; microbiology; toxicity testing; aquatic species; bioassay; biodegradation; biosensor; cation exchange; Clostridium butyricum; electrochemically active bacteria; environmental factor; Escherichia coli; Geobacter sulfurreducens; glucose sensor; Lactobacillus fermentum; life detection; limit of detection; limit of quantitation; oxygen electrode; Pseudomonas putida; public health; reproducibility; Review; Shewanella oneidensis; Shewanella putrefaciens; transgenic organism; waste water; water pollution; biopolymer; 2,6 dichlorophenolindophenol; antibiotic agent; biocide; chloramine B; methylene blue; paraquat; phenazine methosulfate; silicon; sulfadiazine; sulfamethaxozole; sulfonamide; thionine; triphenyltetrazolium; unclassified drug; Bioelectric Energy Sources; Biological Assay; Biopolymers; Equipment Design; Equipment Failure Analysis; Toxicity Tests
Año:2015
Volumen:63
Página de inicio:591
Página de fin:601
DOI: http://dx.doi.org/10.1016/j.bios.2014.04.053
Título revista:Biosensors and Bioelectronics
Título revista abreviado:Biosens. Bioelectron.
ISSN:09565663
CODEN:BBIOE
CAS:Biopolymers; 2,6 dichlorophenolindophenol, 620-45-1, 956-48-9; chloramine B, 127-52-6, 80-16-0; methylene blue, 61-73-4; paraquat, 1910-42-5, 3240-78-6, 4685-14-7; phenazine methosulfate, 299-11-6; silicon, 7440-21-3; sulfadiazine, 547-32-0, 68-35-9; thionine, 581-64-6; triphenyltetrazolium, 298-96-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09565663_v63_n_p591_Abrevaya

Referencias:

  • Abrevaya, X.C., Mauas, P.J.D., Cortón, E., (2010) Astrobiology, 10, pp. 965-971
  • Bennetto, H.P., Delaney, G.M., Mason, J.R., Stirling, J.L., Roller, S., Thurston, C.F., White Jr., D.R., (1987) Operation of microbial fuel cells, , US Patent no. 4,652,501
  • Biffinger, J., Ribbens, M., Ringeisen, B., Pietron, J., Finkel, S., Nealson, K., (2009) Biotechnol. Bioeng., 102, pp. 436-444
  • Biffinger, J.C., Ribbens, M., Nealson, K.H., Ringeisen, B.R., (2013) High-throughput biological screening assay using voltage gradients, , US Patent 2013/8,425,742 B2
  • Choi, D., Hyun, M., Kim, H., Nam, S., (2005) Method and device for detecting toxic material in water using microbial fuel cell, , US Patent 2005/0164331 A1, also published as EP 1497451 A1
  • Clark, L., Lyons, C., (1962) Ann. N.Y. Acad. Sci., 102, pp. 29-45
  • Dávila, D., Esquivel, J.P., Sabaté, N., Mas, J., (2011) Biosens. Bioelectron., 26, pp. 2426-2430
  • Fan, Y., Hu, H., Liu, H., (2007) Environ. Sci. Technol., 41, pp. 8154-8158
  • Feng, Y., Kayode, O., Harper, W.F., (2013) Sci. Total Environ., 449, pp. 223-228
  • Golitsch, F., Bücking, C., Gescher, J., (2013) Biosens. Bioelectron., 47, pp. 285-291
  • Hobson, N.S., Tothill, I., Turner, A.P.F., (1996) Biosens. Bioelectron., 11, pp. 455-477
  • Hou, H., Li, L., de Figueiredo, P., Han, A., (2011) Biosens. Bioelectron., 26, pp. 2680-2684
  • Jennings, V.L.K., Rayner-Brandes, M.H., Bird, D.J., (2001) Water Res., 35, pp. 3448-3456
  • Jones, C.F., Grainger, D.W., (2009) Adv. Drug Deliv. Rev., 61, pp. 438-456
  • Kaur, A., Kim, J.R., Michie, I., Dinsdale, R.M., Guwy, A.J., Premier, G.C., (2013) Biosens. Bioelectron., 47, pp. 50-55
  • Keddy, C.J., Greene, J.C., Bonnell, M.A., (1995) Ecotoxicol. Environ. Saf., 30, pp. 221-251
  • Kim, H.J., Hyun, M.S., Chang, I.S., Kim, B.H., (1999) J. Microbiol. Biotechnol., 9, pp. 365-367
  • Kim, M., Sik, H.M., Gadd, G.M., Kim, H.J., (2007) J. Environ. Monit., 9, pp. 1323-1328
  • Kim, T., Han, J.-I., (2013) J. Environ. Manag., 130, pp. 267-275
  • Kumlanghan, A., Liu, J., Thavarungkul, P., Kanatharana, P., Mattiasson, B., (2007) Biosens. Bioelectron., 22, pp. 2939-2944
  • Liu, L., Zhang, S., Xing, L., Zhao, H., Dong, S., (2012) Talanta, 93, pp. 314-319
  • Liu, Z., Liu, J., Zhang, S., Xing, X.H., Su, Z., (2011) Bioresour. Technol., 102, pp. 10221-10229
  • Luimstra, V.M., Kennedy, S.-J., Güttler, J., Wood, S.A., Williams, D.E., Packer, M.A., (2014) J. Appl. Phycol., 26, pp. 15-23
  • Maoyu, Y., Zhang, Y., (1989) Appl. Environ. Microbiol., 55, pp. 2082-2085
  • Matsunaga, T., Karube, I., Suzuki, S., (1978) Anal. Chim. Acta, 98, pp. 25-30
  • Matsunaga, T., Karube, I., Suzuki, S., (1979) Appl. Environ. Microbiol., 37, pp. 117-121
  • Matsunaga, T., Karube, I., Suzuki, S., (1980) Eur. J. Appl. Microbiol., 10, pp. 235-243
  • Miller, L.G., Oremland, R.S., (2008) Extremophiles, 12, pp. 837-848
  • Mukherjee, S., Su, S., Panmanee, W., Irvin, R.T., Hassett, D.J., Choi, S., (2013) Sens. Actuat. A - Phys., 201, pp. 532-537
  • Nishikawa, S., Sakai, S., Karube, I., Matsunaga, T., Suzuki, S., (1982) Appl. Environ. Microbiol., 43, pp. 814-818
  • Pant, D., Van Bogaert, G., Diels, L., Vanbroekhoven, K., (2010) Bioresour. Technol., 101, pp. 1533-1543
  • Park, M., Tsai, S., Chen, W., (2013) Sensors, 13, pp. 5777-5795
  • Patchett, R.A., Kelly, A.F., Kroll, R.G., (1988) Appl. Microbiol. Biotechnol., 28, pp. 26-31
  • Patil, S., Harnisch, F., Schröder, U., (2010) Chem. Phys. Chem., 11, pp. 2834-2837
  • Selifonova, O., Burlage, R., Barkay, T., (1993) Appl. Environ. Microbiol., 59, pp. 3083-3090
  • Scott, D.L., Ramanathan, S., Shi, W., Rosen, B.P., Daunert, S., (1997) Anal. Chem., 69, pp. 16-20
  • Shen, Y.J., Lefebvre, O., Tan, Z., Ng, H.Y., (2012) Water Sci. Technol., 65, pp. 1223-1228
  • Shingler, V., Moore, T., (1994) J. Bacteriol., 176, pp. 1555-1560
  • Stein, C.N.J., Hamelers, H.V.M., Buisman, C.J.N., (2010) Bioelectrochemistry, 78, pp. 87-91
  • Stein, N.E., Hamelers, H.M.V., van Straten, G., Keesman, K.J., (2012) J. Process Control, 22, pp. 1755-1761
  • Stein, N.E., Hamelers, H.V.M., Buisman, C.N.J., (2012) Sens. Actuat. B - Chem., 163, pp. 1-7
  • Stein, N.E., Hamelers, H.V.M., Buisman, C.N.J., (2012) Sens. Actuat. B - Chem., pp. 816-821
  • Stein, N.E., Keesman, K.J., Hamelers, H.V., van Straten, G., (2011) Biosens. Bioelectron., 26, pp. 3115-3120
  • Su, L., Jia, W., Hou, C., Lei, Y., (2011) Biosens. Bioelectron., 26, pp. 1788-1799
  • Timur, S., Anik, U., Odaci, D., Gorton, L., (2007) Electrochem. Commun., 9, pp. 1810-1815
  • Tront, J.M., Fortner, J.D., Plötze, M., Hughes, J.B., Puzrin, A.M., (2008) Biosens. Bioelectron., 24, pp. 586-590
  • Tront, J.M., Fortner, J.D., Plötze, M., Hughes, J.B., Puzrin, A.M., (2008) Biotechnol. Lett., 30, pp. 1385-1390
  • Turner, A.P.F., Ramsey, G., Higgins, I.J.H., (1983) Biochem. Soc. Trans., 11, pp. 445-448
  • Wang, H.Y., Su, J.Y., (2013) Bioresour. Technol., 145, pp. 271-274
  • Wang, J., (2001) Electroanalysis, 13, pp. 983-988
  • Wang, X., Gao, N., Zhou, Q., (2013) Biosens. Bioelectron., 43, pp. 264-267
  • Xia, L., Liang, B., Li, L., Tang, X., Palchetti, I., Mascini, M., Liu, A., (2013) Biosens. Bioelectron., 44, pp. 160-163
  • Zeikus, J.G., Park, D.H., (2010) Electrode compositions and configurations for electrochemical bioreactor systems, , US Patent 2010/7,838,282 B2
  • Zhang, Y., Angelidaki, I., (2011) Biotechnol. Bioeng., 108, pp. 2339-2347

Citas:

---------- APA ----------
Abrevaya, X.C., Sacco, N.J., Bonetto, M.C., Hilding-Ohlsson, A. & Cortón, E. (2015) . Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses. Biosensors and Bioelectronics, 63, 591-601.
http://dx.doi.org/10.1016/j.bios.2014.04.053
---------- CHICAGO ----------
Abrevaya, X.C., Sacco, N.J., Bonetto, M.C., Hilding-Ohlsson, A., Cortón, E. "Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses" . Biosensors and Bioelectronics 63 (2015) : 591-601.
http://dx.doi.org/10.1016/j.bios.2014.04.053
---------- MLA ----------
Abrevaya, X.C., Sacco, N.J., Bonetto, M.C., Hilding-Ohlsson, A., Cortón, E. "Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses" . Biosensors and Bioelectronics, vol. 63, 2015, pp. 591-601.
http://dx.doi.org/10.1016/j.bios.2014.04.053
---------- VANCOUVER ----------
Abrevaya, X.C., Sacco, N.J., Bonetto, M.C., Hilding-Ohlsson, A., Cortón, E. Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses. Biosens. Bioelectron. 2015;63:591-601.
http://dx.doi.org/10.1016/j.bios.2014.04.053