Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Recent findings justify a renewed interest in alternative splicing (AS): the process is more a rule than an exception as it affects the expression of 60% of human genes; it explains how a vast mammalian proteomic complexity is achieved with a limited number of genes; and mutations in AS regulatory sequences are a widespread source of human disease. AS regulation not only depends on the interaction of splicing factors with their target sequences in the pre-mRNA but is coupled to transcription. A clearer picture is emerging of the mechanisms by which transcription affects AS through promoter identity and occupation. These mechanisms involve the recruitment of factors with dual functions in transcription and splicing (i.e. that contain both functional domains and hence link the two processes) and the control of RNA polymerase II elongation. © 2005 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Promoter usage and alternative splicing
Autor:Kornblihtt, A.R.
Filiación:Laboratorio de Fisiologia Y Biologia Molecular, Facultad de Ciencias Exactas Y Naturales, Pabellon 2, (C1428EHA) Buenos Aires, Argentina
Palabras clave:messenger RNA; peroxisome proliferator activated receptor gamma; proteome; RNA polymerase II; steroid hormone; WT1 protein; alternative RNA splicing; chromatin; chromatin structure; Cytomegalovirus; DNA methylation; exon; gene expression; gene mutation; gene sequence; genetic transcription; intron; isomerization; mammal; nonhuman; oocyte; phosphorylation; polyadenylation; priority journal; promoter region; review; RNA processing; RNA sequence; RNA synthesis; Saccharomyces cerevisiae; spliceosome; transcription initiation; Xenopus; Alternative Splicing; Animals; Humans; Models, Biological; Mutation; Promoter Regions (Genetics); RNA Polymerase II; RNA, Messenger; Saccharomyces cerevisiae; Transcription Factors; Transcription, Genetic; Mammalia
Año:2005
Volumen:17
Número:3
Página de inicio:262
Página de fin:268
DOI: http://dx.doi.org/10.1016/j.ceb.2005.04.014
Título revista:Current Opinion in Cell Biology
Título revista abreviado:Curr. Opin. Cell Biol.
ISSN:09550674
CODEN:COCBE
CAS:RNA Polymerase II, EC 2.7.7.-; RNA, Messenger; Transcription Factors
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09550674_v17_n3_p262_Kornblihtt

Referencias:

  • Bentley, D., The mRNA assembly line: Transcription and processing machines in the same factory (2002) Curr Opin Cell Biol, 14, pp. 336-342
  • Maniatis, T., Reed, R., An extensive network of coupling among gene expression machines (2002) Nature, 416, pp. 499-506
  • Neugebauer, K.M., On the importance of being cotranscriptional (2002) J Cell Sci, 115, pp. 3865-3871
  • Proudfoot, N.J., Furger, A., Dye, M.J., Integrating mRNA processing with transcription (2002) Cell, 108, pp. 501-512
  • Proudfoot, N.J., Dawdling polymerases allow introns time to splice (2003) Nat Struct Biol, 10, pp. 876-878
  • Smale, S.T., Tjian, R., Transcription of herpes simplex virus tk sequences under the control of wild type and mutant human RNA polymerase I promoters (1985) Mol Cell Biol, 5, pp. 352-362
  • Sisodia, S.S., Sollner-Webb, B., Cleveland, D.W., Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation (1987) Mol Cell Biol, 7, pp. 3602-3612
  • McCracken, S., Rosonina, E., Fong, N., Sikes, M., Beyer, A., O'Hare, K., Shuman, S., Bentley, D., Role of RNA polymerase II carboxy-terminal domain in coordinating transcription with RNA processing (1998) Cold Spring Harb Symp Quant Biol, 63, pp. 301-309
  • Dower, K., Rosbash, M T7 polymerase-directed transcripts are processed in yeast and link 3′ end fromation to mRNA nuclear export (2002) RNA, 8, pp. 686-697
  • McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S.D., Bentley, D.L., The C-terminal domain of RNA polymerase II couples mRNA processing to transcription (1997) Nature, 385, pp. 357-361
  • Zeng, C., Berget, S., Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing (2000) Mol Cell Biol, 20, pp. 8290-8301
  • Xu, Y.X., Hirose, Y., Zhou, X.Z., Lu, K.P., Manley, J.L., Pin 1 modulates the structure and function of human RNA polymerase II (2003) Genes Dev, 17, pp. 2765-2776
  • Bird, G., Zorio, D.A.R., Bentley, D.L., RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3′-end formation (2004) Mol Cell Biol, 24, pp. 8939-8963
  • Millhouse, S., Manley, J.L., The C-terminal domain of RNA polymerase II functions as a phosphorylation-dependent splicing activator in a heterologous protein (2005) Mol Cell Biol, 25, pp. 533-544
  • Cramer, P., Pesce, C.G., Baralle, F.E., Kornblihtt, A.R., Functional association between promoter structure and transcript alternative splicing (1997) Proc Natl Acad Sci USA, 94, pp. 11456-11460
  • Cramer, P., Cáceres, J.F., Cazalla, D., Kadener, S., Muro, A.F., Baralle, F.E., Kornblihtt, A.R., Coupling of transcription with alternative splicing, RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer (1999) Mol Cell, 4, pp. 251-258
  • Pan, Q., Shai, O., Misquitta, C., Zhang, W., Saltzman, A.L., Mohammad, N., Babak, T., Morris, Q.D., Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform (2004) Mol Cell, 16, pp. 929-941
  • Auboeuf, D., Hönig, A., Berget, S.M., O'Malley, B.W., Coordinate regulation of transcription and splicing by steroid receptor coregulators (2002) Science, 298, pp. 416-419
  • Pagani, F., Stuani, C., Kornblihtt, A.R., Baralle, F.E., Promoter architecture modulates CFTR exon 9 skipping (2003) J Biol Chem, 278, pp. 1511-1517
  • Robson-Dixon, N.D., García-Blanco, M., MAZ elements alter transcription elongation and silencing of the fibroblast growth factor receptor 2 exon IIIb (2004) J Biol Chem, 279, pp. 29075-29084
  • Nogués, G., Kadener, S., Cramer, P., Bentley, D., Kornblihtt, A.R., Transcriptional activators differ in their abilities to control alternative splicing (2002) J Biol Chem, 277, pp. 43110-43114
  • Auboeuf, D., Dowhan, D.H., Kang, Y.K., Larkin, K., Lee, J.W., Berget, S.M., O'Malley, B.W., Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes (2004) Proc Natl Acad Sci USA, 101, pp. 2270-2274
  • Auboeuf, D., Dowhan, D.H., Li, X., Larkin, K., Ko, L., Berget, S.M., O'Malley, B.W., CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing (2004) Mol Cell Biol, 24, pp. 442-453
  • Rosonina, E., Bakowski, M.A., McCracken, S., Blencowe, B.J., Transcriptional activators control splicing and 3′-end cleavage levels (2003) J Biol Chem, 278, pp. 43034-43040
  • Lai, M.C., The BH, Tarn WY: A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing (1999) J Biol Chem, 274, pp. 11832-11841
  • Monsalve, M., Wu, Z., Adelmant, G., Puigserver, P., Fan, M., Spiegelman, B.M., Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1 (2000) Mol Cell, 6, pp. 307-316
  • Davies, R.C., Calvio, C., Bratt, E., Larsson, S.H., Lamond, A.I., Hastie, N.D., WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes (1998) Genes Dev, 12, pp. 3217-3225
  • Nayler, O., Stratling, W., Bourquin, J.P., Stagljar, I., Lindemann, L., Jasper, H., Hartmann, A.M., Stamm, S., SAF-B protein couples transcription and pre-mRNA splicing to SAR/MAR elements (1998) Nucleic Acids Res, 26, pp. 3542-3549
  • Goldstrohm, A.C., Albrecht, T.R., Suñé, C., Bedford, M., García-Blanco, M.A., The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1 (2001) Mol Cell Biol, 21, pp. 7617-7628
  • Lin, K.T., Lu, R.M., Tarn, W.Y., The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo (2004) Mol Cell Biol, 24, pp. 9176-9185
  • Yuryev, A., Patturajan, M., Litingtung, Y., Joshi, R.V., Gentile, C., Gebara, M., Corden, J.L., The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins (1996) Proc Natl Acad Sci USA, 93, pp. 6975-6980
  • Morris, D.P., Greenleaf, A.L., The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II (2000) J Biol Chem, 275, pp. 39935-39943
  • Myers, J.K., Morris, D.P., Greenleaf, A.L., Oas, T.G., Phosphorylation of RNA polymerase II CTD fragments results in tight binding to the WW domain from the yeast prolyl isomerase Ess1 (2001) Biochemistry, 40, pp. 8479-8486
  • Eperon, L.P., Graham, I.R., Griffiths, A.D., Eperon, I.C., Effects of RNA secondary structure on alternative splicing of pre-mRNA: Is folding limited to a region behind the transcribing RNA polymerase? (1988) Cell, 54, pp. 393-401
  • Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J., Smith, C.W.J., Co-transcriptional commitment to alternative splice site selection (1998) Nucleic Acids Res, 26, pp. 5568-5572
  • Kadener, S., Cramer, P., Nogués, G., Cazalla, D., De La Mata, M., Fededa, J.P., Werbajh, S., Kornblihtt, A.R., Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing (2001) EMBO J, 20, pp. 5759-5768
  • Travers, A., Chromatin modification by DNA tracking (1999) Proc Natl Acad Sci USA, 96, pp. 13634-13637
  • Lorincz, M.C., Dickerson, D.R., Schmitt, M., Groudine, M., Intragenic DNA methylation alters chromatin structures and elongation efficiency in mammalian cells (2004) Nat Struct Mol Biol, 11, pp. 1068-1075
  • Kadener, S., Fededa, J.P., Rosbash, M., Kornblihtt, A.R., Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation (2002) Proc Natl Acad Sci USA, 99, pp. 8185-8190
  • Nogués, G., Muñoz, M.J., Kornblihtt, A.R., Influence of polymerase II processivity on alternative splicing depends on splice site strength (2003) J Biol Chem, 278, pp. 52166-52171
  • Black, D.L., Mechanisms of alternative pre-messenger RNA splicing (2003) Annu Rev Biochem, 72, pp. 291-336
  • Cáceres, J.F., Kornblihtt, A.R., Alternative splicing: Multiple control mechanisms and involvement in human disease (2002) Trends Genet, 18, pp. 186-193
  • De La Mata, M., Alonso, C.R., Kadener, S., Fededa, J.P., Blaustein, M., Pelisch, F., Cramer, P., Kornblihtt, A.R., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol Cell, 12, pp. 525-532
  • Howe, K.J., Kane, C.M., Ares Jr., M., Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae (2003) RNA, 9, pp. 993-1006
  • Meshorer, E., Toiber, D., Zurel, D., Sahly, I., Dori, A., Cagnano, E., Schreiber, L., Soreq, H., Combinatorial complexity of 5′ alternative acetylcholinesterase transcripts and protein products (2004) J Biol Chem, 279, pp. 29740-29751
  • Viegas, L.R., Vicent, G.P., Baranao, J.L., Beato, M., Pecci, A., Steroid hormones induce bcl-X gene expression through direct activation of distal promoter P4 (2004) J Biol Chem, 279, pp. 9831-9839
  • O'Sullivan, J.M., Tan-Wong, S.M., Morillon, A., Lee, B., Coles, J., Mellor, J., Proudfoot, N.J., Gene loops juxtapose promoters and terminators in yeast (2004) Nat Genet, 36, pp. 1014-1018

Citas:

---------- APA ----------
(2005) . Promoter usage and alternative splicing. Current Opinion in Cell Biology, 17(3), 262-268.
http://dx.doi.org/10.1016/j.ceb.2005.04.014
---------- CHICAGO ----------
Kornblihtt, A.R. "Promoter usage and alternative splicing" . Current Opinion in Cell Biology 17, no. 3 (2005) : 262-268.
http://dx.doi.org/10.1016/j.ceb.2005.04.014
---------- MLA ----------
Kornblihtt, A.R. "Promoter usage and alternative splicing" . Current Opinion in Cell Biology, vol. 17, no. 3, 2005, pp. 262-268.
http://dx.doi.org/10.1016/j.ceb.2005.04.014
---------- VANCOUVER ----------
Kornblihtt, A.R. Promoter usage and alternative splicing. Curr. Opin. Cell Biol. 2005;17(3):262-268.
http://dx.doi.org/10.1016/j.ceb.2005.04.014