Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This work presents a theoretical study of the translocation routes of nanoparticles through polymer-brush modified nanopores. The calculations were performed with a molecular theory that explicitly accounts for the shape, size, conformations and interactions of all molecular species in the system. This work reports molecular-theory calculations allowing inhomogeneities in the three spatial dimensions, which allows us to study for the first time off-axis translocation routes, i.e. routes that do not coincide with the axis of the pore. Free-energy landscapes within the pore were obtained for particles of different sizes and affinity for the polymer brush. The minimum free-energy paths on these landscapes determine the translocation routes. Decreasing the size of the particle or increasing its affinity for the polymer, shifts the translocation route from the central axis of the pore towards its walls. Interestingly, for a given polymer-particle affinity, there exists an intermediate particle size that results in the most flat potential of mean force for translocation, therefore, that will optimize the rate of translocation. © 2018 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Routes for nanoparticle translocation through polymer-brush-modified nanopores
Autor:Tagliazucchi, M.; Huang, K.; Szleifer, I.
Filiación:INQUIMAE-CONICET, DQIAQF-School of Sciences-University of Buenos Aires, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
Department of Biomedical Engineering, Life Processes Institute, Northwestern University, Evanston, IL 60208, United States
Palabras clave:polymer-brush modified nanopores; potential of mean force; translocation; Dendrimers; Free energy; Nanoparticles; Particle size; Plasma interactions; Free energy landscape; Minimum free energies; Molecular species; Polymer brushes; Polymer particles; Potential of mean force; Theoretical study; translocation; Nanopores
Año:2018
Volumen:30
Número:27
DOI: http://dx.doi.org/10.1088/1361-648X/aac90b
Título revista:Journal of Physics Condensed Matter
Título revista abreviado:J Phys Condens Matter
ISSN:09538984
CODEN:JCOME
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09538984_v30_n27_p_Tagliazucchi

Referencias:

  • Tagliazucchi, M., Szleifer, I., Transport mechanisms in nanopores and nanochannels: Can we mimic nature? (2015) Mater. Today, 18, pp. 131-142
  • Tagliazucchi, M., Szleifer, I., (2016) Chemically Modified Nanopores and Nanochannels, , (New York: Elsevier)
  • Wen, L.P., Hou, X., Tian, Y., Nie, F.Q., Song, Y.L., Zhai, J., Jiang, L., Bioinspired smart gating of nanochannels toward photoelectric-conversion systems (2010) Adv. Mater., 22, pp. 1021-1024
  • Zhang, Z., Wen, L., Jiang, L., Bioinspired smart asymmetric nanochannel membranes (2018) Chem. Soc. Rev., 47, pp. 322-356
  • Hou, X., Guo, W., Jiang, L., Biomimetic smart nanopores and nanochannels (2011) Chem. Soc. Rev., 40, pp. 2385-2401
  • Brunsen, A., Díaz, C., Pietrasanta, L.I., Yameen, B., Ceolín, M., Soler-Illia, G.J.A.A., Azzaroni, O., Proton and calcium-gated ionic mesochannels: Phosphate-bearing polymer brushes hosted in mesoporous thin films as biomimetic interfacial architectures (2012) Langmuir, 28, pp. 3583-3592
  • Kowalczyk, S.W., Blosser, T.R., Dekker, C., Biomimetic nanopores: Learning from and about nature (2011) Trends Biotechnol., 29, pp. 607-614
  • Guo, W., Current rectification in temperature-responsive single nanopores (2010) ChemPhysChem, 11, pp. 859-864
  • Zhou, Y., Guo, W., Cheng, J., Liu, Y., Li, J., Jiang, L., High-temperature gating of solid-state nanopores with thermo-responsive macromolecular nanoactuators in ionic liquids (2012) Adv. Mater., 24, pp. 962-967
  • Yameen, B., Ali, M., Neumann, R., Ensinger, W., Knoll, W., Azzaroni, O., Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates (2009) Small, 5, pp. 1287-1291
  • Yameen, B., Ali, M., Neumann, R., Ensinger, W., Knoll, W., Azzaroni, O., Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes (2009) Nano Lett., 9, pp. 2788-2793
  • Tagliazucchi, M., Azzaroni, O., Szleifer, I., Responsive polymers end-tethered in solid-state nanochannels: When nanoconfinement really matters (2010) J. Am. Chem. Soc., 132, pp. 12404-12411
  • Vlassiouk, I., Park, C.-D., Vail, S.A., Gust, D., Smirnov, S., Control of nanopore wetting by a photochromic spiropyran: A light-controlled valve and electrical switch (2006) Nano Lett., 6, pp. 1013-1017
  • Wang, G., Bohaty, A.K., Zharov, I., White, H.S., Photon gated transport at the glass nanopore electrode (2006) J. Am. Chem. Soc., 128, pp. 13553-13558
  • Hoelz, A., Debler, E.W., Blobel, G., (2011) Annual Review of Biochemistry, 80, pp. 613-643. , ed R D Kornberg et al
  • Peleg, O., Lim, R.Y.H., Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex (2010) Biol. Chem., 391, pp. 719-730
  • Fernandez-Martinez, J., Rout, M.P., A jumbo problem: Mapping the structure and functions of the nuclear pore complex (2012) Curr. Opin. Cell Biol., 24, pp. 92-99
  • Alber, F., The molecular architecture of the nuclear pore complex (2007) Nature, 450, pp. 695-701
  • Tagliazucchi, M., Peleg, O., Kröger, M., Rabin, Y., Szleifer, I., Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex (2013) Proc. Natl Acad. Sci. USA, 110, pp. 3363-3368
  • Patel, S.S., Belmont, B.J., Sante, J.M., Rexach, M.F., Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex (2007) Cell, 129, pp. 83-96
  • Ribbeck, K., Görlich, D., The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion (2002) EMBO J., 21, pp. 2664-2671
  • Colwell, L.J., Brenner, M.P., Ribbeck, K., Charge as a selection criterion for translocation through the nuclear pore complex (2010) PLoS Comp. Biol., 6, p. e1000747
  • Ma, J., Yang, W., Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots (2010) Proc. Natl Acad. Sci., 107, pp. 7305-7310
  • Ma, J., Goryaynov, A., Sarma, A., Yang, W., Self-regulated viscous channel in the nuclear pore complex (2012) Proc. Natl Acad. Sci., 109, pp. 7326-7331
  • Peters, R., Translocation through the nuclear pore complex: Selectivity and speed by reduction-of-dimensionality (2005) Traffic, 6, pp. 421-427
  • Peleg, O., Tagliazucchi, M., Kroeger, M., Rabin, Y., Szleifer, I., Morphology control of hairy nanopores (2011) ACS Nano, 5, pp. 4737-4747
  • Tagliazucchi, M., Olvera De La Cruz, M., Szleifer, I., Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions (2010) Proc. Natl Acad. Sci., 107, pp. 5300-5305
  • Huang, K., Szleifer, I., Design of multifunctional nanogate in response to multiple external stimuli using amphiphilic diblock copolymer (2017) J. Am. Chem. Soc., 139, pp. 6422-6430
  • Flory, P.J., (1969) Statistical Mechanics of Chain Molecules, , (New York: Wiley)
  • Weinan, E., Ren, W., Vanden-Eijnden, E., Simplified and improved string method for computing the minimum energy paths in barrier-crossing events (2007) J. Chem. Phys., 126
  • Tagliazucchi, M., Rabin, Y., Szleifer, I., Ion transport and molecular organization are coupled in polyelectrolyte modified nanopores (2011) J. Am. Chem. Soc., 133, pp. 17753-17763
  • Carignano, M.A., Szleifer, I., Structural and thermodynamic properties of end-grafted polymers on curved surfaces (1995) J. Chem. Phys., 102, pp. 8662-8669
  • Grest, G.S., Murat, M., Structure of grafted polymeric brushes in solvents of varying quality: A molecular dynamics study (1993) Macromolecules, 26, pp. 3108-3117
  • Zwanzig, R., Diffusion in a rough potential (1988) Proc. Natl Acad. Sci., 85, pp. 2029-2030
  • Putzel, G.G., Tagliazucchi, M., Szleifer, I., Nonmonotonic diffusion of particles among larger attractive crowding spheres (2014) Phys. Rev. Lett., 113
  • Coriell, S.R., Jackson, J.L., Potential and effective diffusion constant in a polyelectrolyte solution (1963) J. Chem. Phys., 39, pp. 2418-2422
  • Ting, C.L., Frischknecht, A.L., Activated pathways for the directed insertion of patterned nanoparticles into polymer membranes (2013) Soft Matter, 9, pp. 9615-9623
  • Gleria, I., Mocskos, E., Tagliazucchi, M., Minimum free-energy paths for the self-organization of polymer brushes (2017) Soft Matter, 13, pp. 2362-2370

Citas:

---------- APA ----------
Tagliazucchi, M., Huang, K. & Szleifer, I. (2018) . Routes for nanoparticle translocation through polymer-brush-modified nanopores. Journal of Physics Condensed Matter, 30(27).
http://dx.doi.org/10.1088/1361-648X/aac90b
---------- CHICAGO ----------
Tagliazucchi, M., Huang, K., Szleifer, I. "Routes for nanoparticle translocation through polymer-brush-modified nanopores" . Journal of Physics Condensed Matter 30, no. 27 (2018).
http://dx.doi.org/10.1088/1361-648X/aac90b
---------- MLA ----------
Tagliazucchi, M., Huang, K., Szleifer, I. "Routes for nanoparticle translocation through polymer-brush-modified nanopores" . Journal of Physics Condensed Matter, vol. 30, no. 27, 2018.
http://dx.doi.org/10.1088/1361-648X/aac90b
---------- VANCOUVER ----------
Tagliazucchi, M., Huang, K., Szleifer, I. Routes for nanoparticle translocation through polymer-brush-modified nanopores. J Phys Condens Matter. 2018;30(27).
http://dx.doi.org/10.1088/1361-648X/aac90b