Artículo

Acosta, J.; Campolongo, M.A.; Höcht, C.; Depino, A.M.; Golombek, D.A.; Agostino, P.V. "Deficits in temporal processing in mice prenatally exposed to Valproic Acid" (2018) European Journal of Neuroscience. 47(6):619-630
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Temporal processing in the seconds-to-minutes range, known as interval timing, is a crucial cognitive function that requires activation of cortico-striatal circuits via dopaminergic–glutamatergic pathways. In humans, both children and adults with autism spectrum disorders (ASD) present alterations in their estimation of time intervals. At present, there are no records of interval timing studies in animal models of ASD. Hence, the objective of the present work was to evaluate interval timing in a mouse model of prenatal exposure to valproic acid (VPA) – a treatment used to induce human-like autistic features in rodent models. Animals were assessed for their ability to acquire timing responses in 15-s and 45-s peak-interval (PI) procedures. Our results indicate that both female and male mice prenatally exposed to VPA present decreased timing accuracy and precision compared to control groups, as well as deviations from the scalar property. Moreover, the observed timing deficits in male VPA mice were reversed after early social enrichment. Furthermore, catecholamine determination by HPLC-ED indicated significant differences in striatal dopaminergic, but not serotonergic, content in female and male VPA mice, consistent with previously identified alterations in dopamine metabolism in ASD. These deficits in temporal processing in a mouse model of autism complement previous results in humans, and provide a useful tool for further behavioral and pharmacological studies. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd

Registro:

Documento: Artículo
Título:Deficits in temporal processing in mice prenatally exposed to Valproic Acid
Autor:Acosta, J.; Campolongo, M.A.; Höcht, C.; Depino, A.M.; Golombek, D.A.; Agostino, P.V.
Filiación:Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Roque Sáenz Peña 352, Bernal, Buenos Aires, B1876BXD, Argentina
Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina
Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires, Argentina
Palabras clave:autism spectrum disorder; cortico-striatal circuits; dopamine; interval timing; valproic acid; catecholamine; dopamine; valproic acid; accuracy; adult; animal experiment; animal model; Article; autism; cognitive defect; controlled study; corpus striatum; dopamine metabolism; dopaminergic system; female; fetus; gender; gestational age; high performance liquid chromatography; male; mouse; nonhuman; prenatal drug exposure; priority journal; reaction time; serotoninergic system; social aspect
Año:2018
Volumen:47
Número:6
Página de inicio:619
Página de fin:630
DOI: http://dx.doi.org/10.1111/ejn.13621
Título revista:European Journal of Neuroscience
Título revista abreviado:Eur. J. Neurosci.
ISSN:0953816X
CODEN:EJONE
CAS:dopamine, 51-61-6, 62-31-7; valproic acid, 1069-66-5, 99-66-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0953816X_v47_n6_p619_Acosta

Referencias:

  • Agostino, P.V., Cheng, R.K., Contributions of dopaminergic signaling to timing accuracy and precision (2016) Curr. Opin. Behav. Sci., 8, pp. 153-160
  • Agostino, P.V., Cheng, R.K., Williams, C.L., West, A.E., Meck, W.H., Acquisition of response thresholds for timed performance is regulated by a calcium-responsive transcription factor, CaRF (2013) Genes Brain Behav., 12, pp. 633-644
  • Agostino, P.V., Gatto, E.M., Cesarini, M., Etcheverry, J.L., Sanguinetti, A., Golombek, D.A., Deficits in temporal processing correlate with clinical progression in Huntington's disease (2017) Acta Neurol. Scand., , https://doi.org/10.1111/ane.12728, [Epub ahead of print.]
  • Allman, M.J., DeLeon, I.G., No time like the present: time perception in autism (2009) Causes and Risks for Autism, pp. 65-76. , In, Giordano, A.C., (Ed.),, Nova Science Publishers, Inc, New York
  • Allman, M.J., Meck, W.H., Pathophysiological distortions in time perception and timed performance (2012) Brain, 135, pp. 656-677
  • Allman, M.J., DeLeon, I.G., Wearden, J.H., Psychophysical assessment of timing in individuals with autism (2011) AJIDD-Am. J. Intellect., 116, pp. 165-178
  • (2013) Diagnostic and Statistical Manual of Mental Disorders (DSM-5®), , American Psychiatric Pub., Arlington, VA
  • Balci, F., Interval timing, dopamine, and motivation (2014) Timing Time Percept., 2, pp. 379-410
  • Balci, F., Ludvig, E.A., Abner, R., Zhuang, X., Poon, P., Brunner, D., Motivational effects on interval timing in dopamine transporter (DAT) knockdown mice (2010) Brain Res., 1325, pp. 89-99
  • Belzung, C., Leman, S., Vourc'h, P., Andres, C., Rodent models for autism: a critical review (2005) Drug Discov. Today Dis. Models, 2, pp. 93-101
  • Beste, C., Saft, C., Andrich, J., Müller, T., Gold, R., Falkenstein, M., Time processing in Huntington's disease: a group-control study (2007) PLoS One, 2
  • Boucher, J., Lost in a sea of time”: Time parsing and autism (2001) Time and Memory, pp. 111-135. , In, Hoerl, C., &, McCormack, T., (Eds),, Oxford University Press, Oxford, Clarendon
  • Bromley, R.L., Mawer, G., Clayton-Smith, J., Baker, G.A., Autism spectrum disorders following utero exposure to antiepileptic drugs (2008) Neurology, 71, pp. 1923-1924
  • Buhusi, C.V., Meck, W.H., What makes us tick? Functional and neural mechanisms of interval timing (2005) Nat. Rev. Neurosci., 6, pp. 755-765
  • Buhusi, C.V., Aziz, D., Winslow, D., Carter, R.E., Swearingen, J.E., Buhusi, M.C., Interval timing accuracy and scalar timing in C57BL/6 mice (2009) Behav. Neurosci., 123, pp. 1102-1113
  • Bussi, I.L., Levin, G., Golombek, D.A., Agostino, P.V., Involvement of dopamine signaling in the circadian modulation of interval timing (2014) Eur. J. Neurosci., 40, pp. 2299-2310
  • Bussi, I.L., Levin, G., Golombek, D.A., Agostino, P.V., Melatonin modulates interval timing in rats: effect of pinealectomy (2015) Int. J. Comp. Psychol., 28, pp. 1-17
  • Cheng, R.K., Meck, W.H., Prenatal choline supplementation increases sensitivity to time by reducing non-scalar sources of variance in adult temporal processing (2007) Brain Res., 1186, pp. 242-254
  • Church, R.M., Meck, W.H., Gibbon, J., Application of scalar timing theory to individual trials (1994) J. Exp. Psychol. Anim. Behav. Process., 120, pp. 135-155
  • Coull, J.T., Vidal, F., Nazarian, B., Macar, F., Functional anatomy of the attentional modulation of time estimation (2004) Science, 303, pp. 1506-1508
  • Coull, J.T., Cheng, R.K., Meck, W.H., Neuroanatomical and neurochemical substrates of timing (2011) Neuropsychopharmacol., 36, pp. 3-25
  • Drew, M.R., Simpson, E.H., Kellendonk, C., Herzberg, W.G., Lipatova, O., Fairhurst, S., Kandel, E.R., Malapani, C., Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing (2007) J. Neurosci., 27, pp. 7731-7739
  • Dufour-Rainfray, D., Vourc'h, P., Tourlet, S., Guilloteau, D., Chalon, S., Andres, C.R., Fetal exposure to teratogens: evidence of genes involved in autism (2011) Neurosci. Biobehav. Rev., 35, pp. 1254-1265
  • Falter, C.M., Noreika, V., Wearden, J.H., Bailey, A.J., More consistent, yet less sensitive: interval timing in autism spectrum disorders (2012) Q. J. Exp. Psychol. (Hove), 65, pp. 2093-2107
  • Farook, M.F., DeCuypere, M., Hyland, K., Takumi, T., LeDoux, M.S., Reiter, L.T., Altered serotonin, dopamine and norepinephrine levels in 15q duplication and Angelman syndrome mouse models (2012) PLoS One, 7
  • Gibbon, J., Scalar expectancy theory and Weber's Law in animal timing (1977) Psychol. Rev., 84, pp. 279-325
  • He, X., Thacker, S., Romigh, T., Yu, Q., Frazier, T.W., Jr., Eng, C., Cytoplasm-predominant Pten associates with increased region-specific brain tyrosine hydroxylase and dopamine D2 receptors in mouse model with autistic traits (2015) Mol. Autism, 6, p. 63
  • Högl, B., Agostino, P.V., Peralta, M.C., Gershanik, O., Golombek, D.A., Alterations in time estimation in multiple system atrophy (2014) Basal Ganglia, 4, pp. 95-99
  • Jones, C.R., Jahanshahi, M., Dopamine modulates striato-frontal functioning during temporal processing (2011) Front. Integr. Neurosci., 5, p. 70
  • Kataoka, S., Takuma, K., Hara, Y., Maeda, Y., Ago, Y., Matsuda, T., Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid (2013) Int. J. Neuropsychopharmacol., 16, pp. 91-103
  • Kazlauskas, N., Campolongo, M., Lucchina, L., Zappala, C., Depino, A.M., Postnatal behavioral and inflammatory alterations in female pups prenatally exposed to valproic acid (2016) Psychoneuroendocrino., 72, pp. 11-21
  • Kim, K.C., Kim, P., Go, H.S., Choi, C.S., Yang, S.I., Cheong, J.H., Shin, C.Y., Ko, K.H., The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats (2011) Toxicol. Lett., 201, pp. 137-142
  • Kim, Y.S., Leventhal, B.L., Koh, Y.J., Fombonne, E., Laska, E., Lim, E.C., Cheon, K.A., Kim, S.J., Prevalence of autism spectrum disorders in a total population sample (2011) Am. J. Psychiat., 168, pp. 904-912
  • Kim, K.C., Kim, P., Go, H.S., Choi, C.S., Park, J.H., Kim, H.J., Jeon, S.J., Han, S.H., Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder (2013) J. Neurochem., 124, pp. 832-843
  • Lucchina, L., Depino, A.M., Altered peripheral and central inflammatory responses in a mouse model of autism (2014) Autism Res., 7, pp. 273-289
  • Lustig, C., Matell, M.S., Meck, W.H., Not “just” a coincidence: Frontal-striatal synchronization in working memory and interval timing (2005) Memory, 13, pp. 441-448
  • Malapani, C., Rakitin, B., Levy, R., Meck, W.H., Deweer, B., Dubois, B., Gibbon, J., Coupled temporal memories in Parkinson's disease: a dopamine-related dysfunction (1998) J. Cogn. Neurosci., 10, pp. 316-331
  • Mandy, W., Lai, M.C., Annual Research Review: the role of the environment in the developmental psychopathology of autism spectrum condition (2016) J. Child Psychol. Psychiatry, 57, pp. 271-292
  • Marquardt, D.W., An algorithm for least-squares estimation of nonlinear parameters (1963) J. Soc. Ind. Appl. Math., 11, pp. 431-441
  • Martin, J.S., Poirier, M., Bowler, D.M., Brief report: impaired temporal reproduction performance in adults with autism spectrum disorder (2010) J. Autism Dev. Disord., 40, pp. 640-646
  • Matell, M.S., Meck, W.H., Nicolelis, M.A.L., Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons (2003) Behav. Neurosci., 117, pp. 760-773
  • Matell, M.S., Bateson, M., Meck, W.H., Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions (2006) Psychopharmacology, 188, pp. 201-212
  • Meck, W.H., Neuropharmacology of timing and time perception (1996) Cognitive Brain Res., 3, pp. 227-242
  • Meck, W.H., (2003) Functional and Neural Mechanisms of Interval Timing, , (Ed.) (, CRC Press, Raton, FL
  • Meck, W.H., Benson, A.M., Dissecting the brain's internal clock: how frontal-striatal circuitry keeps time and shifts attention (2002) Brain Cognition, 48, pp. 195-211
  • Moore, S.J., Turnpenny, P., Quinn, A., Glover, S., Lloyd, D.J., Montgomery, T., Dean, J.C., A clinical study of 57 children with fetal anticonvulsant syndromes (2000) J. Med. Genet., 37, pp. 489-497
  • Nakamura, K., Sekine, Y., Ouchi, Y., Tsujii, M., Yoshikawa, E., Futatsubashi, M., Matsuzaki, H., Brain serotonin and dopamine transporter bindings in adults with high-functioning autism (2010) Arch. Gen. Psychiat., 67, pp. 59-68
  • Patterson, H.P., Modeling autistic features in animals (2011) Pediatr. Res., 69 (5), pp. 34R-40R
  • Richardson, N.R., Roberts, D.C., Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy (1996) J. Neurosci. Meth., 66, pp. 1-11
  • Schneider, T., Przewłocki, R., Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism (2005) Neuropsychopharmacol., 30, pp. 80-89
  • Schneider, T., Roman, A., Basta-Kaim, A., Kubera, M., Budziszewska, B., Schneider, K., Przewłocki, R., Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid (2008) Psychoneuroendocrino., 33, pp. 728-740
  • Soares, S., Atallah, B.V., Paton, J.J., Midbrain dopamine neurons control judgment of time (2016) Science, 354, pp. 1273-1277
  • Staal, W.G., Langen, M., van Dijk, S., Mensen, V.T., Durston, S., DRD3 gene and striatum in autism spectrum disorder (2015) Brit. J. Psychiat., 206, pp. 431-432
  • Stromland, K., Nordin, V., Miller, M., Akerstrom, B., Gillberg, C., Autism in thalidomide embryopathy: a population study (1994) Dev. Med. Child Neurol., 36, pp. 351-356
  • Szelag, E., Kowalska, J., Galkowski, T., Pöppel, E., Temporal processing deficits in high-functioning children with autism (2004) Brit. J. Psychol., 95, pp. 269-282
  • Wagner, G.C., Reuhl, K.R., Cheh, M., McRae, P., Halladay, A.K., A new neurobehavioral model of autism in mice: pre- and postnatal exposure to sodium valproate (2006) J. Autism Dev. Disord., 36, pp. 779-793
  • Ward, R.D., Kellendonk, C., Simpson, E.H., Lipatova, O., Drew, M.R., Fairhurst, S., Kandel, E.R., Balsam, P.D., Impaired timing precision produced by striatal D2 receptor overexpression is mediated by cognitive and motivational deficits (2009) Behav. Neurosci., 123, pp. 720-730
  • Yang, M., Perry, K., Weber, M.D., Katz, A.M., Crawley, J.N., Social peers rescue autism-relevant sociability deficits in adolescent mice (2011) Autism Res., 4, pp. 17-27
  • Yin, B., Meck, W.H., Comparison of interval timing behaviour in mice following dorsal or ventral hippocampal lesions with mice having δ-opioid receptor gene deletion (2014) Philos. Trans. R. Soc. Lond. B Biol. Sci., 369, p. 20120466
  • Zablotsky, B., Black, L.I., Maenner, M.J., Schieve, L.A., Blumberg, S.J., Estimated Prevalence of Autism and Other Developmental Disabilities Following Questionnaire Changes in the 2014 National Health Interview Survey (2015) Natl. Health Stat. Rep., 87, pp. 1-20

Citas:

---------- APA ----------
Acosta, J., Campolongo, M.A., Höcht, C., Depino, A.M., Golombek, D.A. & Agostino, P.V. (2018) . Deficits in temporal processing in mice prenatally exposed to Valproic Acid. European Journal of Neuroscience, 47(6), 619-630.
http://dx.doi.org/10.1111/ejn.13621
---------- CHICAGO ----------
Acosta, J., Campolongo, M.A., Höcht, C., Depino, A.M., Golombek, D.A., Agostino, P.V. "Deficits in temporal processing in mice prenatally exposed to Valproic Acid" . European Journal of Neuroscience 47, no. 6 (2018) : 619-630.
http://dx.doi.org/10.1111/ejn.13621
---------- MLA ----------
Acosta, J., Campolongo, M.A., Höcht, C., Depino, A.M., Golombek, D.A., Agostino, P.V. "Deficits in temporal processing in mice prenatally exposed to Valproic Acid" . European Journal of Neuroscience, vol. 47, no. 6, 2018, pp. 619-630.
http://dx.doi.org/10.1111/ejn.13621
---------- VANCOUVER ----------
Acosta, J., Campolongo, M.A., Höcht, C., Depino, A.M., Golombek, D.A., Agostino, P.V. Deficits in temporal processing in mice prenatally exposed to Valproic Acid. Eur. J. Neurosci. 2018;47(6):619-630.
http://dx.doi.org/10.1111/ejn.13621