Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the antennal lobe (AL), the first olfactory centre of the insect brain, odorants are represented as spatiotemporal patterns of glomerular activity. Whether and how such patterns are modified in the long term after precocious olfactory experiences (i.e. in the first days of adulthood) remains unknown. To address this question, we used in vivo optical imaging of calcium activity in the antennal lobe of 17-day-old honeybees which either experienced an odorant associated with sucrose solution 5-8 days after emergence or were left untreated. In both cases, we imaged neural responses to the learned odor and to three novel odors varying in functional group and carbon-chain length. Two different odor concentrations were used. We also measured behavioral responses of 17-day-old honeybees, treated and untreated, to these stimuli. We show that precocious olfactory experience increased general odor-induced activity and the number of activated glomeruli in the adult AL, but also affected qualitative odor representations, which appeared shifted in the neural space of treated animals relative to control animals. Such effects were not limited to the experienced odor, but were generalized to other perceptually similar odors. A similar trend was found in behavioral experiments, in which increased responses to the learned odor extended to perceptually similar odors in treated bees. Our results show that early olfactory experiences have long-lasting effects, reflected in behavioral responses to odorants and concomitant neural activity in the adult olfactory system. © 2009 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

Registro:

Documento: Artículo
Título:Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage
Autor:Arenas, A.; Giurfa, M.; Farina, W.M.; Sandoz, J.C.
Filiación:Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
IFIBYNE, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
CNRS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
Palabras clave:Associative learning; Early experiences; Honeybee; Memory retrieval; Olfaction; Optical imaging; calcium; carbon; animal experiment; antenna; article; brain function; controlled study; glomerulus; honeybee; in vivo study; insect society; nerve cell; nerve potential; nonhuman; odor; olfactory system; priority journal; stimulus response; Animals; Association Learning; Bees; Behavior, Animal; Brain Mapping; Calcium; Calcium Signaling; Conditioning, Classical; Odors; Olfactory Pathways; Sense Organs; Sensory Receptor Cells; Smell; Social Behavior; Statistics as Topic
Año:2009
Volumen:30
Número:8
Página de inicio:1498
Página de fin:1508
DOI: http://dx.doi.org/10.1111/j.1460-9568.2009.06940.x
Título revista:European Journal of Neuroscience
Título revista abreviado:Eur. J. Neurosci.
ISSN:0953816X
CODEN:EJONE
CAS:calcium, 14092-94-5, 7440-70-2; carbon, 7440-44-0; Calcium, 7440-70-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0953816X_v30_n8_p1498_Arenas

Referencias:

  • Arenas, A., Farina, W.F., Age and rearing environment interact in the retention of early olfactory memories in honeybees (2008) J. Comp. Physiol. A., 194, pp. 629-640
  • Arenas, A., Fernández, V.M., Farina, W.M., Floral odor learning within the hive affects honeybees' foraging decisions (2007) Naturwissenschaften, 94, pp. 218-222
  • Arenas, A., Fernández, V.M., Farina, W.M., Floral scents experienced within the colony affect long-term foraging preferences in honeybees (2008) Apidologie, 39, pp. 714-722
  • Ashraf, S.I., McLoon, A.L., Sclarsic, S.M., Kunes, S.N., Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila (2006) Cell, 124, pp. 191-205
  • Bazhenov, M., Stopfer, M., Sejnowski, T.J., Laurent, G., Fast odor learning improves reliability of odor responses in the locust antennal lobe (2005) Neuron, 46, pp. 483-492
  • Beggs, K.T., Glendining, K.A., Marechal, N.M., Vergoz, V., Nakamura, I., Slessor, K.N., Mercer, A.R., Queen pheromone modulates brain dopamine function in worker honey bees (2007) Proc. Natl. Acad. Sci. U S A, 104, pp. 2460-2464
  • Bitterman, M.E., Menzel, R., Fietz, A., Schaefer, S., Classical conditioning of proboscis extension in honeybees (1983) J. Comp. Psychol., 97, p. 107
  • Carlsson, M.A., Galizia, C.G., Hansson, B.S., Spatial representation of odours in the antennal lobe of the moth Spodoptera littoralis (Lepidoptera: Noctuidae) (2002) Chem. Senses, 27, pp. 231-244
  • Caubet, Y., Jaisson, P., Lenoir, A., Preimaginal induction of adult behaviour in insects (1992) Q. J. Exp. Psychol. B, 44, pp. 165-178
  • Coopersmith, R., Leon, M., Enhanced neural response to familiar olfactory cues (1984) Science, 4664, pp. 849-851
  • Daly, K.C., Christensen, T.A., Lei, H., Smith, B.H., Hildebrand, J.G., Learning modulates the ensemble representations for odors in primary olfactory networks (2004) PNAS, 101, pp. 10476-10481
  • Deisig, N., Lachnit, H., Giurfa, M., The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations (2002) Learn. Mem., 9, pp. 112-121
  • Deisig, N., Giurfa, M., Lachnit, H., Sandoz, J.C., Neural representation of olfactory mixtures in the honeybee antennal lobe (2006) Eur. J. Neurosci., 24, pp. 1161-1174
  • Devaud, J.M., Acebes, A., Ferrús, A., Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila (2001) J. Neurosci., 21, pp. 6274-6282
  • Devaud, J.M., Acebes, A., Ramaswami, M., Ferrús, A., Structural and functional changes in the olfactory pathway of adult Drosophila take place at a critical age (2003) J. Neurobiol., 56, pp. 13-23
  • Ditzen, M., Evers, J.F., Galizia, C.G., Odor similarity does not influence the time needed for odor processing (2003) Chem. Senses, 28, pp. 781-789
  • Faber, T., Joerges, J., Menzel, R., Associative learning modifies neural representations of odors in the insect brain (1999) Nat. Neurosci., 2, pp. 74-78
  • Farina, W.M., Grüter, C., Diaz, P.C., Social learning of floral odours inside the honeybee hive (2005) Proc. R. Soc. B, 272, pp. 1923-1928
  • Friedrich, R.W., Korsching, S.I., Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging (1997) Neuron, 18, pp. 737-752
  • Fuch, E., Dustmann, H., Stadler, H., Schürmann, F.W., Neuroactive compounds in the brain of the honeybee during imaginal life (1989) Comp. Biochem. Physiol., 92, p. 337
  • Galizia, C.G., Vetter, R., Optical methods for analyzing odor-evoked activity in the insect brain (2005) Advances in Insect Sensory Neuroscience., pp. 349-392. , In. Christensen, T.A. Ed. CRC. Boca Raton, FL. pp
  • Galizia, C.G., Joerges, J., Kuttner, A., Faber, T., Menzel, R., A semi-in vivo preparation for optical recording of the insect brain (1997) J. Neurosci. Methods, 76, pp. 61-69
  • Galizia, C.G., Nägler, K., Hölldobler, B., Menzel, R., Odour coding is bilaterally symmetrical in the AL of honeybees (Apis mellifera) (1998) Eur. J. Neurosci., 10, pp. 2964-2974
  • Galizia, C.G., McIlwrath, S.L., Menzel, R., A digital three-dimensional atlas of the honeybee AL based on optical sections acquired using confocal microscopy (1999) Cell Tissue Res., 295, pp. 383-394
  • Galizia, C.G., Sachse, S., Rappert, A., Menzel, R., The glomerular code for odor representation is species specific in the honeybee Apis mellifera (1999) Nat. Neurosci., 2, pp. 473-478
  • Gascuel, J., Masson, C., Developmental study of afferented and deafferented bee antennal lobes (1991) J. Neurobiol., 22, pp. 795-810
  • Giurfa, M., Behavioral and neural analysis of associative learning in the honeybee: A taste from the magic well (2007) J. Comp. Physiol. A., 193, pp. 801-824
  • Grüter, C., Acosta, L.E., Farina, W.M., Propagation of olfactory information within the honeybee hive (2006) Behav. Ecol. Sociobiol., 60, pp. 707-715
  • Guerrieri, F., Schubert, M., Sandoz, J.C., Giurfa, M., Perceptual and neural olfactory similarity in honeybees (2005) PLoS Biol., 360
  • Hammer, M., Menzel, R., Multiple sites of associative odor learning as revealed by local brain microinjections of Octopamine in honeybees (1998) Learn. Mem., 5, pp. 146-156
  • Hamrick, W.D., Wilson, D.A., Sullivan, R.M., Neural correlates of memory for odor detection conditioning in adult rats (1993) Neurosci. Lett., 163, pp. 36-40
  • Heil, J.E., Oland, L.A., Lohr, C., Acetylcholine-mediated axon-glia signaling in the developing insect olfactory system (2007) Eur. J. Neurosci., 26, pp. 1227-1241
  • Hildebrand, J.G., Shepherd, G.M., Mechanisms of olfactory discrimination: Converging evidence for common principles across phyla (1997) Annu. Rev. Neurosci., 20, pp. 595-631
  • Ichikawa, N., Sasaki, M., Importance of social stimuli for the development of learning capability in honeybee (2003) Appl. Entomol. Zool., 38, pp. 203-209
  • Iso, H., Simoda, S., Matsuyama, T., Environmental change during postnatal development alters behaviour, cognitions and neurogenesis of mice (2007) Behav. Brain Res., 179, pp. 90-98
  • Joerges, J., Küttner, A., Galizia, C.G., Menzel, R., Representations of odours and odour mixtures visualized in the honeybee brain (1997) Nature, 387, pp. 285-288
  • Lindauer, M., Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat (1952) Z. Vergl. Physiol., 34, pp. 299-345
  • Lorenz, K., Der Kumpan in der Umwelt des Vogels (1935) Zeitschrift für Ornithologie, 83, pp. 137-213
  • Masson, C., Arnold, G., Ontogeny, maturation and plasticity of the olfactory system in the worker bee (1984) J. Insect Physiol., 30, pp. 7-14
  • Masson, C., Arnold, G., Organization and plasticity of the olfactory system of the honeybee, Apis mellifera (1987) Neurobiology and Behavior of Honeybee., , In. Menzel, R. Mercer, A. Eds. Springer Verlag. Berlin, Heidelberg. p. 281
  • Masson, C., Pham-Delègue, M.H., Fonta, C., Gascuel, J., Arnold, G., Nicolas, G., Kerszberg, M., Recent advances in the concept of adaptation to natural odour signals in the honeybee Apis mellifera L (1993) Apidologie, 24, pp. 169-194
  • Menzel, R., Memory dynamics in the honeybee (1999) J. Comp. Physiol. A., 185, pp. 323-340
  • Oitzl, M.S., Workel, J.O., Fluttert, M., Frosch, F., De Kloet, E.R., Maternal deprivation affects behaviour from youth to senescence: Amplification of individual differences in spatial learning and memory in senescent Brown Norway rats (2000) Eur J Neurosci, 12, pp. 3771-3780
  • Peele, P., Ditzen, M., Menzel, R., Galizia, C.G., Appetitive odor learning does not change olfactory coding in a subpopulation of honeybee antennal lobe neurons (2006) J. Comp. Physiol. A., 192, pp. 1083-1103
  • Rösch, G.A., Untersuchungen über die Arbeitsteilung im Bienenstaat (1925) Z. Vergl. Physiol., 2, pp. 571-631
  • Rubin, B.D., Katz, L.C., Optical imaging of odorant representations in the mammalian olfactory bulb (1999) Neuron, 23, pp. 499-511
  • Sachse, S., Galizia, C.G., The role of inhibition for temporal and spatial odor representation in olfactory output neurons: A calcium imaging study (2002) J. Neurophysiol., 87, pp. 1106-1117
  • Sachse, S., Galizia, C.G., The coding of odour-intensity in the honeybee antennal lobe: Local computation optimizes odor representation (2003) Eur. J. Neurosci., 18, pp. 2119-2132
  • Sachse, S., Rappert, A., Galizia, C.G., The spatial representation of chemical structures in the AL of honeybees: Steps towards the olfactory code (1999) Eur. J. Neurosci., 11, pp. 3970-3982
  • Sachse, S., Rueckert, E., Keller, A., Okada, R., Tanaka, N.K., Ito, K., Vosshall, L.B., Activity-dependent plasticity in an olfactory circuit (2007) Neuron, 56, pp. 838-850
  • Sandoz, J.C., Laloi, D., Odoux, J.F., Pham-Delègue, M.H., Olfactory information transfer in the honeybee: Compared efficiency of classical conditioning and early exposure (2000) Anim. Behav., 59, pp. 1025-1034
  • Sandoz, J.C., Galizia, C.G., Menzel, R., Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes (2003) Neuroscience, 120, pp. 1137-1148
  • Seeley, T.D., Adaptive significance of the age polytheism schedule in honeybee colonies (1982) Behav. Ecol. Sociobiol., 11, pp. 287-293
  • Sokal, R.R., Rohlf, F.J., (1995) Biometry: The Principles and Practice of Statistics in Biological Research, 3rd Edn., p. 715. , W. H. Freeman and Co. New York. pp
  • Stetter, M., Greve, H., Galizia, C.G., Obermayer, K., Analysis of calcium imaging signals from the honeybee brain by nonlinear models (2001) Neuroimage, 13, pp. 119-128
  • Sullivan, R.M., Leon, M., Early olfactory learning induces an enhanced olfactory bulb response in young rats (1986) Developmental Brain Research, 27 (1-2), pp. 278-282. , DOI 10.1016/0165-3806(86)90256-7
  • Takeda, K., Classical conditioned response in the honey bee (1961) J. Insect Physiol., 6, pp. 168-179
  • Uchida, N., Takahashi, Y.K., Tanifuji, M., Mori, K., Odor maps in the mammalian olfactory bulb: Domain organization and odorant structural features (2000) Nat. Neurosci., 3, pp. 1035-1043
  • Vergoz, V., Schreurs, H.A., Mercer, A.R., Queen pheromone blocks aversive learning in young worker bees (2007) Science, 317, pp. 384-386
  • Wang, W.S., Zhang, S., Sato, K., Srinivasan, M.V., Maturation of odor representation in the honeybee antennal lobe (2005) J. Insect Physiol., 51, pp. 1244-1254
  • Wilson, D.A., Leon, M., Noradrenergic modulation of olfactory bulb excitability in the postnatal rat (1988) Dev. Brain Res., 42, pp. 69-75
  • Wilson, D.A., Sullivan, R.M., Neurobiology of associative learning in the neonate: Early olfactory learning (1994) Behav. Neural Biol., 61, pp. 1-18
  • Winnington, A., Napper, R.M., Mercer, A.R., Structural plasticity of identified glomeruli in the antennal lobes of the adult worker honey bee (1996) J. Comp. Neurol., 365, pp. 479-490
  • Woo, C.C., Leon, M., Sensitive period for neural and behavioral response development to learned odors (1987) Dev. Brain Res., 36, pp. 309-313
  • Wright, G.A., Thomson, M.G.A., Smith, B.H., Odour concentration affects odour identity in honeybees (2005) Proc. R. Soc. B, 272, pp. 2417-2422
  • Yu, D., Ponomarev, A., Davis, R.L., Altered representation of the spatial code for odors after olfactory classical conditioning: Memory trace formation by synaptic recruitment (2004) Neuron, 42, pp. 437-449

Citas:

---------- APA ----------
Arenas, A., Giurfa, M., Farina, W.M. & Sandoz, J.C. (2009) . Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage. European Journal of Neuroscience, 30(8), 1498-1508.
http://dx.doi.org/10.1111/j.1460-9568.2009.06940.x
---------- CHICAGO ----------
Arenas, A., Giurfa, M., Farina, W.M., Sandoz, J.C. "Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage" . European Journal of Neuroscience 30, no. 8 (2009) : 1498-1508.
http://dx.doi.org/10.1111/j.1460-9568.2009.06940.x
---------- MLA ----------
Arenas, A., Giurfa, M., Farina, W.M., Sandoz, J.C. "Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage" . European Journal of Neuroscience, vol. 30, no. 8, 2009, pp. 1498-1508.
http://dx.doi.org/10.1111/j.1460-9568.2009.06940.x
---------- VANCOUVER ----------
Arenas, A., Giurfa, M., Farina, W.M., Sandoz, J.C. Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage. Eur. J. Neurosci. 2009;30(8):1498-1508.
http://dx.doi.org/10.1111/j.1460-9568.2009.06940.x