Artículo

Calzetta, E.; Ho, K.-Y.; Hu, B.L. "Vortex formation in a two-dimensional Bose gas" (2010) Journal of Physics B: Atomic, Molecular and Optical Physics. 43(9)
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We discuss the stability of a homogeneous two-dimensional Bose gas at finite temperature against the formation of isolated vortices. We consider a patch of several healing lengths in size and compute its free energy using the Euclidean formalism. Since we deal with an open system, which is able to exchange particles and angular momentum with the rest of the condensate, we use the symmetry-breaking (as opposed to the particle number conserving) formalism, and include configurations with all values of angular momenta in the partition function. At finite temperature, there appear sphaleron configurations associated with isolated vortices. The contribution from these configurations to the free energy is computed in the dilute gas approximation. We show that the Euclidean action of linearized perturbations of a vortex is not positive definite. As a consequence the free energy of the 2D Bose gas acquires an imaginary part. This signals the instability of the gas. This instability may be identified with the Berezinskii-Kosterlitz-Thouless transition. © 2010 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Vortex formation in a two-dimensional Bose gas
Autor:Calzetta, E.; Ho, K.-Y.; Hu, B.L.
Filiación:Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-Ciudad Universitaria, 1428 Buenos Aires, Argentina
Institute of Physical Sciences and Technology, Department of Physics, University of Maryland, College Park, MD 20742-4111, United States
Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742-4111, United States
Palabras clave:Berezinskii-Kosterlitz-Thouless transition; Bose gas; Dilute gas; Euclidean; Finite temperatures; Imaginary parts; Particle numbers; Partition functions; Positive definite; Symmetry-breaking; Vortex formation; Angular momentum; Bosons; Electron energy analyzers; Free energy; Open systems; Two dimensional; Vortex flow; Gases
Año:2010
Volumen:43
Número:9
DOI: http://dx.doi.org/10.1088/0953-4075/43/9/095004
Título revista:Journal of Physics B: Atomic, Molecular and Optical Physics
Título revista abreviado:J Phys B At Mol Opt Phys
ISSN:09534075
CODEN:JPAPE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09534075_v43_n9_p_Calzetta

Referencias:

  • Mermin, N.D., Wagner, H., Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models (1966) Phys. Rev. Lett., 17, p. 1133
  • Hohenberg, P.C., Existence of long-range order in one and two dimensions (1967) Phys. Rev., 158, p. 383
  • Coleman, S., There are no Goldstone bosons in two dimensions (1973) Commun. Math. Phys., 31, p. 259
  • Berezinskii, V.L., Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group: I. Classical systems (1971) Sov. Phys.-JETP, 32, p. 493
  • Kosterlitz, J.M., Thouless, D.J., Ordering, metastability and phase transitions in two-dimensional systems (1973) J. Phys. C: Solid State Phys., 6, p. 1181
  • Al Khawaja, U., Andersen, J.O., Proukakis, N.P., Stoof, H.T.C., Low-dimensional Bose gases (2002) Phys. Rev. A, 66, p. 013615
  • How, P.-T., Leclair, A., Critical point of the two-dimensional Bose gas: An S-matrix approach (2010) Nucl. Phys., 824, p. 415
  • Gräter, M., Wetterich, C., Kosterlitz-Thouless phase transition in the two-dimensional linear σ model (1995) Phys. Rev. Lett., 75, p. 378
  • Gersdorff, G.V., Wetterich, C., Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition (2001) Physical Review B - Condensed Matter and Materials Physics, 64 (5), pp. 0545131-0545135. , 054513
  • Floerchinger, S., Wetterich, C., Superfluid Bose gas in two dimensions (2009) Phys. Rev. A, 79, p. 013601
  • Popov, V.N., Quantum vortices and phase transitions in Bose systems (1973) Sov. Phys.-JETP, 37, p. 341
  • Popov, V.N., (1987) Functional Integrals and Collective Excitations, , (Cambridge: Cambridge University Press) chapter 8
  • Chu, H.-C., Williams, G.A., Quenched Kosterlitz-Thouless superfluid transition (2000) Phys. Rev. Lett., 86, p. 2585
  • Arovas, D.P., Auerbach, A., Quantum tunneling of vortices in two-dimensional superfluids (2008) Phys. Rev. B, 78, p. 094508
  • Lindner, N.H., Auerbach, A., Arovas, D.P., Vortex quantum dynamics of two-dimensional lattice bosons (2008) Phys. Rev. Lett., 102, p. 070403
  • Joseph Wang, C.-C., Duine, R.A., MacDonald, A.H., Quantum vortex dynamics in two-dimensional neutral superfluids (2010) Phys. Rev. A, 81, p. 013609
  • Gross, E.P., Hydrodynamics of a superfluid condensate (1963) J. Math. Phys., 4, p. 195
  • Ginzburg, V.L., Pitaevskii, L.P., On the theory of superfluidity (1958) Sov. Phys.-JETP, 34, p. 858
  • Pu, H., Law, C.K., Eberly, J.H., Bigelow, N.P., Coherent disintegration and stability of vortices in trapped Bose condensates (1999) Physical Review A - Atomic, Molecular, and Optical Physics, 59 (2-3), pp. 1533-1537
  • Prokof'Ev, N., Ruebenacker, O., Svistunov, B., Critical point of a weakly interacting two-dimensional Bose gas (2001) Physical Review Letters, 87 (1-27), pp. 2704021-2704024. , 270402
  • Prokof'Ev, N., Svistunov, B., Two-dimensional weakly interacting Bose gas in the fluctuation region (2002) Phys. Rev. A, 66, p. 043608
  • Davis, M.J., Morgan, S.A., Burnett, K., Simulations of thermal Bose fields in the classical limit (2002) Phys. Rev. A, 66, p. 053618
  • Hutchinson, D.A.W., Blakie, P.B., Phase transitions in ultra-cold two-dimensional Bose gases (2006) Int. J. Mod. Phys., 20 (30-31), p. 5224
  • Simula, T.P., Blakie, P.B., Thermal activation of vortex-antivortex pairs in quasi-two-dimensional Bose-Einstein condensates (2006) Phys. Rev. Lett., 96, p. 020404
  • Shumayer, D., Hutchinsin, D.A.W., Thermodynamically activated vortex-dipole formation in a two-dimensional Bose-Einstein condensate (2007) Phys. Rev. A, 75, p. 015601
  • Simula, T.P., Davis, M.J., Blakie, P.B., Superfluidity of an interacting trapped quasi-two-dimensional Bose gas (2008) Phys. Rev. A, 77, p. 023618
  • Holzmann, M., Chevallier, M., Krauth, W., Semiclassical theory of the quasi-two-dimensional trapped Bose gas (2008) Europhys. Lett., 82, p. 30001
  • Bisset, R.N., Baillie, D., Blakie, P.B., Analysis of the Holzmann-Chevallier-Krauth theory for the trapped quasi-two-dimensional Bose gas (2009) Phys. Rev. A, 79, p. 013602
  • Bisset, R.N., Davis, M.J., Simula, T.P., Blakie, P.B., Quasi-condensation and coherence in the quasi-two-dimensional trapped Bose gas (2009) Phys. Rev. A, 79, p. 033626
  • Bisset, R.N., Blakie, P.B., Quantitative test of the mean-field description of a trapped two-dimensional Bose gas (2009) Phys. Rev. A, 80, p. 045603
  • Bisset, R.N., Blakie, P.B., Transition region properties of a trapped quasi-two-dimensional degenerate Bose gas (2009) Phys. Rev. A, 80, p. 035602
  • Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B., Dalibard, J., Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas (2007) Nature, 441, p. 1118
  • Krüger, P., Hadzibabic, Z., Dalibard, J., Critical point of an interacting two-dimensional atomic Bose gas (2007) Phys. Rev. Lett., 99, p. 040402
  • Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K., Phillips, W.D., Observation of a 2D Bose gas: From thermal to quasi-condensate to superfluid (2009) Phys. Rev. Lett., 102, p. 170401
  • Calzetta, E., Hu, B.-L., (2008) Nonequilibrium Quantum Field Theory, , (Cambridge: Cambridge University Press) chapter 13.3
  • Rubakov, V., (2002) Classical Theory of Gauge Fields, , (Princeton, NJ: Princeton University Press)
  • Langer, J.S., Theory of nucleation rates (1968) Phys. Rev. Lett., 21, p. 973
  • Langer, J.S., Statistical theory of the decay of metastable states (1969) Ann. Phys., 54, p. 258
  • Coleman, S., Fate of the false vacuum: Semiclassical theory (1977) Phys. Rev. D, 15, p. 2929
  • Callan, C.G., Coleman, S., Fate of the false vacuum: II. First quantum corrections (1977) Phys. Rev. D, 16, p. 1762
  • Coleman, S., (1985) Aspects of Symmetry, , (Cambridge: Cambridge University Press) chapter 7
  • Affleck, I.K., De Luccia, F., Induced vacuum decay (1979) Phys. Rev. D, 20, p. 3168
  • Affleck, I., Quantum-statistical metastability (1981) Phys. Rev. Lett., 46, p. 388
  • Haldane, F.D.M., Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids (1981) Phys. Rev. Lett., 47, p. 1840
  • Calzetta, E., Hu, B.L., Rey, A.M., Bose-Einstein-condensate superfluid-Mott-insulator transition in an optical lattice (2006) Phys. Rev. A, 73, p. 023610
  • Hadzibabic, Z., Dalibard, J., (2009) Two-dimensional Bose Fluids: An Atomic Physics Perspective
  • Lifshitz, L.M., Pitaevskii, L.P., (1990) Statistical Physics, Part 2, 9. , (Course of Theoretical Physics) (Oxford: Pergamon) chapter 30
  • Barnett, R., Chen, E., Refael, G., Vortex synchronization in Bose-Einstein condensates: A time-dependent Gross-Pitaevskii equation approach (2010) New J. Phys., 13, p. 043004
  • Altland, A., Simons, B., (2006) Condensed Matter Field Theory, , (Cambridge: Cambridge University Press) chapter 9
  • Negele, J.W., Orland, H., (1998) Quantum Many-Particle Systems
  • Feynman, R.P., (1972) Statistical Mechanics, , (Reading, MA: Addison-Wesley) chapter 3
  • Rajaraman, R., (1987) Solitons and Instantons, , (New York: Elsevier) chapter 10
  • Gelfand, I.M., Yaglom, A.M., Integration in functional spaces and its applications in quantum physics (1960) J. Math. Phys., 1, p. 48
  • Dunne, G.V., Functional determinants in quantum field theory (2008) J. Phys. A: Math. Theor., 41, p. 304006
  • Holzmann, M., Krauth, W., Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas (2008) Phys. Rev. Lett., 100, p. 190402

Citas:

---------- APA ----------
Calzetta, E., Ho, K.-Y. & Hu, B.L. (2010) . Vortex formation in a two-dimensional Bose gas. Journal of Physics B: Atomic, Molecular and Optical Physics, 43(9).
http://dx.doi.org/10.1088/0953-4075/43/9/095004
---------- CHICAGO ----------
Calzetta, E., Ho, K.-Y., Hu, B.L. "Vortex formation in a two-dimensional Bose gas" . Journal of Physics B: Atomic, Molecular and Optical Physics 43, no. 9 (2010).
http://dx.doi.org/10.1088/0953-4075/43/9/095004
---------- MLA ----------
Calzetta, E., Ho, K.-Y., Hu, B.L. "Vortex formation in a two-dimensional Bose gas" . Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 43, no. 9, 2010.
http://dx.doi.org/10.1088/0953-4075/43/9/095004
---------- VANCOUVER ----------
Calzetta, E., Ho, K.-Y., Hu, B.L. Vortex formation in a two-dimensional Bose gas. J Phys B At Mol Opt Phys. 2010;43(9).
http://dx.doi.org/10.1088/0953-4075/43/9/095004