Artículo

Barmak, D.H.; Dorso, C.O.; Otero, M.; Solari, H.G. "Modelling interventions during a dengue outbreak" (2014) Epidemiology and Infection. 142(3):545-561
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present a stochastic dynamical model for the transmission of dengue that considers the co-evolution of the spatial dynamics of the vectors (Aedes aegypti) and hosts (human population), allowing the simulation of control strategies adapted to the actual evolution of an epidemic outbreak. We observed that imposing restrictions on the movement of infected humans is not a highly effective strategy. In contrast, isolating infected individuals with high levels of compliance by the human population is efficient even when implemented with delays during an ongoing outbreak. We also studied insecticide-spraying strategies assuming different (hypothetical) efficiencies. We observed that highly efficient fumigation strategies seem to be effective during an outbreak. Nevertheless, taking into account the controversial results on the use of spraying as a single control strategy, we suggest that carrying out combined strategies of fumigation and isolation during an epidemic outbreak should account for a suitable strategy for the attenuation of epidemic outbreaks. © 2013 Cambridge University Press.

Registro:

Documento: Artículo
Título:Modelling interventions during a dengue outbreak
Autor:Barmak, D.H.; Dorso, C.O.; Otero, M.; Solari, H.G.
Filiación:Departamento de Física, FCEN-UBA and IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
Palabras clave:Dengue fever; Infectious disease control; Mathematical modelling; Outbreaks; Spatial modelling; insecticide; Aedes aegypti; algorithm; article; bed net; dengue; Dengue virus; epidemic; fumigation; infection control; infection prevention; insecticidal activity; insecticide resistance; molecular dynamics; patient care; pesticide spraying; public health service; stochastic model; validation process; vector control; virus carrier; virus transmission; adult; Article; coevolution; control strategy; dengue; disease carrier; female; human; infection control; medication compliance; nonhuman; outcome assessment; stochastic model; Aedes; Animals; Dengue; Disease Outbreaks; Humans; Insect Vectors; Insecticides; Models, Biological; Models, Theoretical; Patient Isolation
Año:2014
Volumen:142
Número:3
Página de inicio:545
Página de fin:561
DOI: http://dx.doi.org/10.1017/S0950268813001301
Título revista:Epidemiology and Infection
Título revista abreviado:Epidemiol. Infect.
ISSN:09502688
CODEN:EPINE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09502688_v142_n3_p545_Barmak

Referencias:

  • Gubler, D.J., Clark, G.G., Dengue/dengue hemorrhagic fever the emergence of a global health problem (1995) Emerging Infectious Diseases, 1, pp. 55-57
  • Gubler, D.J., Dengue and dengue hemorrhagic fever (1998) Clinical Microbiology Review, 11, pp. 480-496
  • WHO. Dengue guidelines for diagnosis, treatment, prevention and control. Geneva, Switzerland: TDR/World Health Organization, 2009; WHO. Dengue and severe dengue. Geneva, Switzerland: World Health Organization, 2012. Fact sheet 117; Webster, D.P., Farrar, J., Rowland-Jones, S., Progress towards a dengue vaccine (2009) Lancet Infectious Diseases, 9, pp. 678-687
  • Sabchareon, A., Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: A randomised, controlled phase 2b trial (2012) Lancet, 380, pp. 1559-1567
  • Newton, E.A.C., Reiter, P., A model of the transmission of dengue fever with an evaluation of the impact of ultralow volume (ULV) insecticide applications on dengue epidemics (1992) American Journal of Tropical Medicine and Hygiene, 47, pp. 709-720
  • Esteva, L., Vargas, C., Analysis of a dengue disease transmission model (1998) Mathematical Biosciences, 150, pp. 131-151
  • Esteva, L., Vargas, C., A model for dengue disease with variable human population (1999) Journal of Mathematical Biology, 38, pp. 220-240
  • Esteva, L., Vargas, C., Influence of vertical and mechanical transmission on the dynamics of dengue disease (2000) Mathematical Biosciences, 167, pp. 51-64
  • Bartley, L.M., Donnelly, C.A., Garnett, G.P., The seasonal pattern of dengue in endemic areas: Mathematical models of mechanisms (2002) Transactions of the Royal Society of Tropical Medicine and Hygiene, 96, pp. 387-397
  • Pongsumpun, P., Tang, I.M., Transmission of dengue hemorrhagic fever in an age structured population (2003) Mathematical and Computer Modelling, 37, pp. 949-961
  • Feng, Z., Velazco-Hernandez, J.X., Competitive exclusion in a vector-host model for the dengue fever (1997) Journal of Mathematical Biology, 35, pp. 523-544
  • Derouich, M., Boutayeb, A., Twizell, E.H., A model of dengue fever (2003) Biomedical Engineering Online, 2, p. 4
  • Bianco, S., Shaw, L.B., Schwartz, I.B., Epidemics with multistrain interactions: The interplay between cross immunity and antibody-dependent enhancement (2009) Chaos, 19, p. 043123
  • Chikaki, E., Ishikawa, H., A dengue transmission model in Thailand considering sequential infections with all four serotypes (2009) Journal of Infection in Developing Countries, 3, pp. 711-722
  • Esteva, L., Vargas, C., Coexistance of different serotypes of dengue virus (2003) Journal of Mathematical Biology, 46, pp. 31-47
  • Garba, S.M., Gumel, A.B., Effect of cross-immunity on the tranmsission dynamics of two strains of dengue (2010) International Journal of Computer Mathematics, 87, pp. 2361-2384
  • Wikramaratna, P.S., The effects of tertiary and quaternary infections on the epidemiology of dengue (2010) PLoS One, 5, pp. e12347
  • Tran, A., Raffy, M., On the dynamics of dengue epidemics from large-scale information (2006) Theoretical Population Biology, 69, pp. 3-12
  • Atkinson, M.P., Analyzing the control of mosquitoborne diseases by a dominant lethal genetic system (2007) Proceedings of the National Academy of Sciences USA, 104, pp. 9540-9545
  • Favier, C., Influence of spatial heterogeneity on an emerging infectious disease: The case of dengue epidemics (2005) Proceedings of the Royal Society of London, Series B: Biological Sciences, 272, pp. 1171-1177
  • Focks, D.A., A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation and samples of simulation results (1995) American Journal of Tropical Medicine and Hygiene, 53, pp. 489-505
  • Otero, M., Solari, H.G., Mathematical model of dengue disease transmission by Aedes aegypti mosquito (2010) Mathematical Biosciences, 223, pp. 32-46
  • De Castro Medeiros, L.C., Modeling the dynamic transmission of dengue fever: Investigating disease persistance (2011) PLoS Neglected Tropical Diseases, 5, pp. e942
  • Supriatna, A.K., Soewono, E., Vangils, S.A., A twoage-classes dengue transmission model (2008) Mathematical Biosciences, 216, pp. 114-121
  • Otero, M., Modeling dengue outbreaks (2011) Mathematical Biosciences, 232, pp. 87-95
  • Adams, B., Kapan, D.D., Man bites Mosquito: Understanding the contribution of human movement to vector-borne disease dynamics (2009) PLoS One, 4, pp. e6763
  • Barmak, D.H., Dengue epidemics and human mobility (2011) Physical Review e, E84, p. 011901
  • Burattini, M.N., Modelling the control strategies against dengue in Singapore (2008) Epidemiology and Infection, 136, pp. 309-319
  • Luz, P.M., Dengue vector control strategies in an urban setting: An economic modelling assessment (2011) Lancet, 377, pp. 1673-1680
  • Oki, M., Optimal timing of insecticide fogging to minimize dengue cases: Modelling dengue transmission among various seasonalities and transmission intensities (2011) PLoS Neglected Tropical Diseases, 5, pp. e1367
  • Edman, J.D., Aedes aegypti (Diptera: Culicidae) movement influenced by availability of oviposition sites (1998) Journal of Medical Entomology, 35, pp. 578-583
  • Bergero, P., Dispersal of Aedes aegypti: Field study in temperate areas and statistical approach (2011) Preprint Available from the Authors
  • Otero, M., Schweigmann, N., Solari, H.G., A stochastic spatial dynamical model for Aedes aegypti (2008) Bulletin of Mathematical Biology, 70, pp. 1297-1325
  • Otero, M., Solari, H.G., Schweigmann, N., A stochastic population dynamic model for Aedes aegypti: Formulation and application to a city with temperate climate (2006) Bulletin of Mathematical Biology, 68, pp. 1945-1974
  • Nishiura, H., Halstead, S.B., Natural history of dengue virus (DENV)-1 and DENV-4 infections: Reanalysis of classic studies (2007) Journal of Infectious Diseases, 195, pp. 1007-1013
  • Ethier, S.N., Kurtz, T.G., (1986) Markov Processes, , New York: John Wiley and Sons
  • Andersson, H., Britton, T., (2000) Stochastic Epidemic Models and Their Statistical Analysis, Vol. 151 (Lecture Notes in Statistics), , Berlin: Springer-Verlag
  • Solari, H.G., Natiello, M.A., Stochastic population dynamics: The Poisson approximation (2003) Physical Review e, 67, p. 031918
  • Ekpereonne, E., Effectiveness of periodomestic space spraying with insecticide on dengue transmission; Systematic review (2010) Tropical Medicine and International Health, 15, pp. 619-631
  • Chastel, C., Eventual role of asymptomatic cases of dengue for the introduction and spread of dengue viruses in non-endemic regions (2012) Frontiers in Physiology, 3, pp. 1-4
  • Yasuno, M., Tonn, R.J., A Study of biting habits of Aedes aegypti in Bangkok, Thailand (1970) Bulletin of the World Health Organization, 43, pp. 319-325
  • Romeo Aznar, V., Modeling the complex hatching and development of Aedes aegypti in temperate climates (2013) Ecological Modelling, 253, pp. 44-55
  • Sharpe, P.J.H., Demichele, D.W., Reaction kinetics of poikilotherm development (1977) Journal of Theoretical Biology, 64, pp. 649-670
  • Schoofield, R.M., Sharpe, P.J.H., Magnuson, C.E., Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory (1981) Journal of Theoretical Biology, 88, pp. 719-731
  • Focks, D.A., Dynamics life table model for Aedes aegypti: Analysis of the literature and model development (1993) Journal of Medical Entomology, 30, pp. 1003-1018
  • Trpis, M., Dry season survival of Aedes aegypti eggs in various breeding sites in the Dar Salaam area, Tanzania (1972) Bulletin of the World Health Organization, 47, pp. 433-437
  • Horsfall, W.R., (1955) Mosquitoes: Their Bionomics and Relation to Disease, , New York, USA: Ronald
  • Bar-Zeev, M., The effect of temperature on the growth rate and survival of the immature stages of Aedes aegypti (1958) Bulletin of Entomological Research, 49, pp. 157-163
  • Rueda, L.M., Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae) (1990) Journal of Medical Entomology, 27, pp. 892-898
  • Southwood, T.R.E., Studies on the life budget of Aedes aegypti in Wat Samphaya Bangkok Thailand (1972) Bulletin of the World Health Organization, 46, pp. 211-226
  • Christophers, R., (1960) Aedes Aegypti (L.), the Yellow Fever Mosquito, , Cambridge: Cambridge University Press
  • Fay, R.W., The biology and bionomics of Aedes aegypti in the laboratory (1964) Mosquito News, 24, pp. 300-308
  • Bar-Zeev, M., The effect of density on the larvae of a mosquito and its influence on fecundity (1957) Bulletin of the Research Council of Israel, 6 B, pp. 220-228
  • Nayar, J.K., Sauerman, D.M., The effects of nutrition on survival and fecundity in Florida mosquitoes. Part 3. Utilization of blood and sugar for fecundity (1975) Journal of Medical Entomology, 12, pp. 220-225

Citas:

---------- APA ----------
Barmak, D.H., Dorso, C.O., Otero, M. & Solari, H.G. (2014) . Modelling interventions during a dengue outbreak. Epidemiology and Infection, 142(3), 545-561.
http://dx.doi.org/10.1017/S0950268813001301
---------- CHICAGO ----------
Barmak, D.H., Dorso, C.O., Otero, M., Solari, H.G. "Modelling interventions during a dengue outbreak" . Epidemiology and Infection 142, no. 3 (2014) : 545-561.
http://dx.doi.org/10.1017/S0950268813001301
---------- MLA ----------
Barmak, D.H., Dorso, C.O., Otero, M., Solari, H.G. "Modelling interventions during a dengue outbreak" . Epidemiology and Infection, vol. 142, no. 3, 2014, pp. 545-561.
http://dx.doi.org/10.1017/S0950268813001301
---------- VANCOUVER ----------
Barmak, D.H., Dorso, C.O., Otero, M., Solari, H.G. Modelling interventions during a dengue outbreak. Epidemiol. Infect. 2014;142(3):545-561.
http://dx.doi.org/10.1017/S0950268813001301