Artículo

Bajard, L.; Morelli, L.G.; Ares, S.; Pécréaux, J.; Jülicher, F.; Oates, A.C. "Wnt-regulated dynamics of positional information in zebrafish somitogenesis" (2014) Development (Cambridge). 141(6):1381-1391
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

How signaling gradients supply positional information in a field of moving cells is an unsolved question in patterning and morphogenesis. Here, we ask how a Wnt signaling gradient regulates the dynamics of a wavefront of cellular change in a flow of cells during somitogenesis. Using time-controlled perturbations of Wnt signaling in the zebrafish embryo, we changed segment length without altering the rate of somite formation or embryonic elongation. This result implies specific Wnt regulation of the wavefront velocity. The observed Wnt signaling gradient dynamics and timing of downstream events support a model for wavefront regulation in which cell flow plays a dominant role in transporting positional information. © 2014. Published by The Company of Biologists Ltd.

Registro:

Documento: Artículo
Título:Wnt-regulated dynamics of positional information in zebrafish somitogenesis
Autor:Bajard, L.; Morelli, L.G.; Ares, S.; Pécréaux, J.; Jülicher, F.; Oates, A.C.
Filiación:Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 735/5, 62500 Brno, Czech Republic
Departamento de Física, FCEyN Universidad de Buenos Aires, and IFIBA, CONICET, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Logic of Genomic Systems Laboratory, Spanish National Centre for Biotechnology CNB-CSIC, E-28049 Madrid, Spain
Institute of Genetics and Developmental Biology of Rennes, CNRS UMR 6290, University Rennes 1, 2 Avenue du Prof. L. Bernard, 35043 Rennes, France
MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
Palabras clave:Embryonic elongation; Fgf signaling; Segmentation clock; Signal gradient; Time-lapse microscopy; Wnt signaling; Wnt protein; animal experiment; article; controlled study; embryo; flow rate; fluorescence; gene expression; heat shock; immunohistochemistry; in situ hybridization; morphogenesis; nonhuman; notochord; oscillation; priority journal; regulatory mechanism; somite; somitogenesis; Wnt signaling pathway; zebra fish; Embryonic elongation; Fgf signaling; Segmentation clock; Signal gradient; Time-lapse microscopy; Wnt signaling; Animals; Animals, Genetically Modified; Basic Helix-Loop-Helix Transcription Factors; Body Patterning; Fibroblast Growth Factors; Gene Expression Regulation, Developmental; Heat-Shock Response; Intercellular Signaling Peptides and Proteins; Models, Biological; Somites; T-Box Domain Proteins; Wnt Proteins; Wnt Signaling Pathway; Zebrafish; Zebrafish Proteins
Año:2014
Volumen:141
Número:6
Página de inicio:1381
Página de fin:1391
DOI: http://dx.doi.org/10.1242/dev.093435
Título revista:Development (Cambridge)
Título revista abreviado:Development
ISSN:09501991
CODEN:DEVPE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09501991_v141_n6_p1381_Bajard

Referencias:

  • Aulehla, A., Herrmann, B.G., Segmentation in vertebrates: Clock and gradient finally joined (2004) Genes Dev., 18, pp. 2060-2067
  • Aulehla, A., Pourquié, O., Signaling gradients during paraxial mesoderm development (2010) Cold Spring Harb. Perspect. Biol., 2, pp. a000869
  • Aulehla, A., Wehrle, C., Brand-Saberi, B., Kemler, R., Gossler, A., Kanzler, B., Herrmann, B.G., Wnt3a plays a major role in the segmentation clock controlling somitogenesis (2003) Dev. Cell, 4, pp. 395-406
  • Aulehla, A., Wiegraebe, W., Baubet, V., Wahl, M.B., Deng, C., Taketo, M., Lewandoski, M., Pourquié, O., A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation (2008) Nat. Cell Biol., 10, pp. 186-193
  • Buchberger, A., Bonneick, S., Arnold, H., Expression of the novel basichelix-loop-helix transcription factor cMespo in presomitic mesoderm of chicken embryos (2000) Mech. Dev., 97, pp. 223-226
  • Chalamalasetty, R.B., Dunty Jr., W.C., Biris, K.K., Ajima, R., Iacovino, M., Beisaw, A., Feigenbaum, L., Kyba, M., The Wnt3a/β-catenin target gene Mesogenin1 controls the segmentation clock by activating a Notch signalling program (2011) Nat. Commun., 2, p. 390
  • Chen, H., Xu, Z., Mei, C., Yu, D., Small, S., A system of repressor gradients spatially organizes the boundaries of Bicoid-dependent target genes (2012) Cell, 149, pp. 618-629
  • Chien, A.J., Conrad, W.H., Moon, R.T., A Wnt survival guide: From flies to human disease (2009) J. Invest. Dermatol., 129, pp. 1614-1627
  • Chisholm, R.H., Hughes, B.D., Landman, K.A., Building a morphogen gradient without diffusion in a growing tissue (2010) PLoS ONE, 5, pp. e12857
  • Christ, B., Jacob, H.J., Jacob, M., Somitogenesis in the chick embryo. Determination of the segmentation direction (1974) Verh. Anat. Ges., 68, pp. 573-579
  • Cooke, J., Zeeman, E.C., A clock and wavefront model for control of the number of repeated structures during animal morphogenesis (1976) J. Theor. Biol., 58, pp. 455-476
  • Dahmann, C., Oates, A.C., Brand, M., Boundary formation and maintenance in tissue development (2011) Nat. Rev. Genet., 12, pp. 43-55
  • Delaune, E.A., François, P., Shih, N.P., Amacher, S.L., Single-cellresolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics (2012) Dev. Cell, 23, pp. 995-1005
  • Dubrulle, J., Pourquié, O., fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo (2004) Nature, 427, pp. 419-422
  • Dubrulle, J., McGrew, M.J., Pourquié, O., FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation (2001) Cell, 106, pp. 219-232
  • Dunty Jr., W.C., Biris, K.K., Chalamalasetty, R.B., Taketo, M.M., Lewandoski, M., Yamaguchi, T.P., Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation (2008) Development, 135, pp. 85-94
  • Fior, R., Maxwell, A.A., Ma, T.P., Vezzaro, A., Moens, C.B., Amacher, S.L., Lewis, J., Saúde, L., The differentiation and movement of presomitic mesoderm progenitor cells are controlled by Mesogenin 1 (2012) Development, 139, pp. 4656-4665
  • Galceran, J., Sustmann, C., Hsu, S.C., Folberth, S., Grosschedl, R., LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis (2004) Genes Dev., 18, pp. 2718-2723
  • Gaunt, S.J., Drage, D., Cockley, A., Vertebrate caudal gene expression gradients investigated by use of chick cdx-A/lacZ and mouse cdx-1/lacZ reporters in transgenic mouse embryos: Evidence for an intron enhancer (2003) Mech. Dev., 120, pp. 573-586
  • Gibb, S., Zagorska, A., Melton, K., Tenin, G., Vacca, I., Trainor, P., Maroto, M., Dale, J.K., Interfering with Wnt signalling alters the periodicity of the segmentation clock (2009) Dev. Biol., 330, pp. 21-31
  • Gomez, C., Ozbudak, E.M., Wunderlich, J., Baumann, D., Lewis, J., Pourquié, O., Control of segment number in vertebrate embryos (2008) Nature, 454, pp. 335-339
  • Greco, T.L., Takada, S., Newhouse, M.M., McMahon, J.A., McMahon, A.P., Camper, S.A., Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development (1996) Genes Dev., 10, pp. 313-324
  • Groves, J.A., Hammond, C.L., Hughes, S.M., Fgf8 drives myogenic progression of a novel lateral fast muscle fibre population in zebrafish (2005) Development, 132, pp. 4211-4222
  • Harima, Y., Takashima, Y., Ueda, Y., Ohtsuka, T., Kageyama, R., Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene (2013) Cell Rep., 3, pp. 1-7
  • Herrgen, L., Schröter, C., Bajard, L., Oates, A.C., Multiple embryo timelapse imaging of zebrafish development (2009) Methods Mol. Biol., 546, pp. 243-254
  • Herrgen, L., Ares, S., Morelli, L.G., Schroter, C., Julicher, F., Oates, A.C., Intercellular coupling regulates the period of the segmentation clock (2010) Curr. Biol., 20, pp. 1244-1253
  • Hofmann, M., Schuster-Gossler, K., Watabe-Rudolph, M., Aulehla, A., Herrmann, B.G., Gossler, A., WNT signaling, in synergy with T/TBX6, controls Notch signaling by regulating Dll1 expression in the presomitic mesoderm of mouse embryos (2004) Genes Dev., 18, pp. 2712-2717
  • Holley, S.A., Geisler, R., Nüsslein-Volhard, C., Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity (2000) Genes Dev., 14, pp. 1678-1690
  • Ibañes, M., Kawakami, Y., Rasskin-Gutman, D., Izpisúa Belmonte, J.C., Cell lineage transport: A mechanism for molecular gradient formation (2006) Mol. Syst. Biol., 2, p. 57
  • Jho, E.H., Zhang, T., Domon, C., Joo, C.K., Freund, J.N., Costantini, F., Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway (2002) Mol. Cell. Biol., 22, pp. 1172-1183
  • Kagermeier-Schenk, B., Wehner, D., Ozhan-Kizil, G., Yamamoto, H., Li, J., Kirchner, K., Hoffmann, C., Schambony, A., Waif1/5T4 inhibits Wnt/β-catenin signaling and activates noncanonical Wnt pathways by modifying LRP6 subcellular localization (2011) Dev. Cell, 21, pp. 1129-1143
  • Kelly, G.M., Greenstein, P., Erezyilmaz, D.F., Moon, R.T., Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways (1995) Development, 121, pp. 1787-1799
  • Lekven, A.C., Thorpe, C.J., Waxman, J.S., Moon, R.T., Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning (2001) Dev. Cell, 1, pp. 103-114
  • Martin, B.L., Kimelman, D., Wnt signaling and the evolution of embryonic posterior development (2009) Curr. Biol., 19, pp. R215-R219
  • Martin, B.L., Kimelman, D., Brachyury establishes the embryonic mesodermal progenitor niche (2010) Genes Dev., 24, pp. 2778-2783
  • Martin, B.L., Kimelman, D., Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation (2012) Dev. Cell, 22, pp. 223-232
  • Masamizu, Y., Ohtsuka, T., Takashima, Y., Nagahara, H., Takenaka, Y., Yoshikawa, K., Okamura, H., Kageyama, R., Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 1313-1318
  • Menkes, B., Sandor, S., Researches on the formation of axial organs of the chick embryo. V (1969) Revue Roumaine d'Embryologie et de Cytologie, 6, pp. 65-77
  • Menkes, B., Sandor, S., Elias, S., Researches on the formation of axial organs of the chick embryo. IV (1968) Revue Roumaine d'Embryologie et de Cytologie, 5, pp. 131-137
  • Morelli, L.G., Ares, S., Herrgen, L., Schröter, C., Jülicher, F., Oates, A.C., Delayed coupling theory of vertebrate segmentation (2009) HFSP J., 3, pp. 55-66
  • Morelli, L.G., Uriu, K., Ares, S., Oates, A.C., Computational approaches to developmental patterning (2012) Science, 336, pp. 187-191
  • Moreno, T.A., Kintner, C., Regulation of segmental patterning by retinoic acid signaling during Xenopus somitogenesis (2004) Dev. Cell, 6, pp. 205-218
  • Moreno, T.A., Jappelli, R., Izpisúa Belmonte, J.C., Kintner, C., Retinoic acid regulation of the Mesp-Ripply feedback loop during vertebrate segmental patterning (2008) Dev. Biol., 315, pp. 317-330
  • Murray, P.J., Maini, P.K., Baker, R.E., The clock and wavefront model revisited (2011) J. Theor. Biol., 283, pp. 227-238
  • Naiche, L.A., Holder, N., Lewandoski, M., FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 4018-4023
  • Nikaido, M., Kawakami, A., Sawada, A., Furutani-Seiki, M., Takeda, H., Araki, K., Tbx24, encoding a T-box protein, is mutated in the zebrafish somitesegmentation mutant fused somites (2002) Nat. Genet., 31, pp. 195-199
  • Oates, A.C., Rohde, L.A., Ho, R.K., Generation of segment polarity in the paraxial mesoderm of the zebrafish through a T-box-dependent inductive event (2005) Dev. Biol., 283, pp. 204-214
  • Oates, A.C., Morelli, L.G., Ares, S., Patterning embryos with oscillations: Structure, function and dynamics of the vertebrate segmentation clock (2012) Development, 139, pp. 625-639
  • Palmeirim, I., Henrique, D., Ish-Horowicz, D., Pourquié, O., Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis (1997) Cell, 91, pp. 639-648
  • Palmeirim, I., Dubrulle, J., Henrique, D., Ish-Horowicz, D., Pourquié, O., Uncoupling segmentation and somitogenesis in the chick presomitic mesoderm (1998) Dev. Genet., 23, pp. 77-85
  • Pfeiffer, S., Alexandre, C., Calleja, M., Vincent, J.P., The progeny of wingless-expressing cells deliver the signal at a distance in Drosophila embryos (2000) Curr. Biol., 10, pp. 321-324
  • Picker, A., Cavodeassi, F., McHate, A., Bernauer, S., Hans, S., Abe, G., Kawakami, K., Brand, M., Dynamic coupling of pattern formation and morphogenesis in the developing vertebrate retina (2009) PLoS Biol., 7, pp. e1000214
  • Porcher, A., Dostatni, N., The bicoid morphogen system (2010) Curr. Biol., 20, pp. R249-R254
  • Pourquié, O., Vertebrate segmentation: From cyclic gene networks to scoliosis (2011) Cell, 145, pp. 650-663
  • Pourquié, O., Tam, P.P., A nomenclature for prospective somites and phases of cyclic gene expression in the presomitic mesoderm (2001) Dev. Cell, 1, pp. 619-620
  • Preibisch, S., Saalfeld, S., Tomancak, P., Globally optimal stitching of tiled 3D microscopic image acquisitions (2009) Bioinformatics, 25, pp. 1463-1465
  • Rogers, K.W., Schier, A.F., Morphogen gradients: From generation to interpretation (2011) Annu. Rev. Cell Dev. Biol., 27, pp. 377-407
  • Row, R.H., Kimelman, D., Bmp inhibition is necessary for post-gastrulation patterning and morphogenesis of the zebrafish tailbud (2009) Dev. Biol., 329, pp. 55-63
  • Saga, Y., Hata, N., Koseki, H., Taketo, M.M., Mesp2: A novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation (1997) Genes Dev., 11, pp. 1827-1839
  • Sawada, A., Fritz, A., Jiang, Y.J., Yamamoto, A., Yamasu, K., Kuroiwa, A., Saga, Y., Takeda, H., Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites (2000) Development, 127, pp. 1691-1702
  • Sawada, A., Shinya, M., Jiang, Y.J., Kawakami, A., Kuroiwa, A., Takeda, H., Fgf/MAPK signalling is a crucial positional cue in somite boundary formation (2001) Development, 128, pp. 4873-4880
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Schmid, B., Fiji: An opensource platform for biological-image analysis (2012) Nat. Methods, 9, pp. 676-682
  • Schroter, C., Oates, A.C., Segment number and axial identity in a segmentation clock period mutant (2010) Curr. Biol., 20, pp. 1254-1258
  • Schröter, C., Herrgen, L., Cardona, A., Brouhard, G.J., Feldman, B., Oates, A.C., Dynamics of zebrafish somitogenesis (2008) Dev. Dyn., 237, pp. 545-553
  • Shimizu, T., Bae, Y.K., Muraoka, O., Hibi, M., Interaction of Wnt and caudal-related genes in zebrafish posterior body formation (2005) Dev. Biol., 279, pp. 125-141
  • Stoick-Cooper, C.L., Weidinger, G., Riehle, K.J., Hubbert, C., Major, M.B., Fausto, N., Moon, R.T., Distinct Wnt signaling pathways have opposing roles in appendage regeneration (2007) Development, 134, pp. 479-489
  • Stulberg, M.J., Lin, A., Zhao, H., Holley, S.A., Crosstalk between Fgf and Wnt signaling in the zebrafish tailbud (2012) Dev. Biol., 369, pp. 298-307
  • Szeto, D.P., Kimelman, D., Combinatorial gene regulation by Bmp and Wnt in zebrafish posterior mesoderm formation (2004) Development, 131, pp. 3751-3760
  • Thorpe, C.J., Weidinger, G., Moon, R.T., Wnt/beta-catenin regulation of the Sp1-related transcription factor sp5l promotes tail development in zebrafish (2005) Development, 132, pp. 1763-1772
  • van Eeden, F.J., Granato, M., Schach, U., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Kane, D.A., Mutations affecting somite formation and patterning in the zebrafish, Danio rerio (1996) Development, 123, pp. 153-164
  • Wahl, M.B., Deng, C., Lewandoski, M., Pourquié, O., FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis (2007) Development, 134, pp. 4033-4041
  • Weidinger, G., Thorpe, C.J., Wuennenberg-Stapleton, K., Ngai, J., Moon, R.T., The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/beta-catenin signaling in mesoderm and neuroectoderm patterning (2005) Curr. Biol., 15, pp. 489-500
  • Wilson, V., Olivera-Martinez, I., Storey, K.G., Stem cells, signals and vertebrate body axis extension (2009) Development, 136, pp. 1591-1604
  • Wittler, L., Shin, E.H., Grote, P., Kispert, A., Beckers, A., Gossler, A., Werber, M., Herrmann, B.G., Expression of Msgn1 in the presomitic mesoderm is controlled by synergism of WNT signalling and Tbx6 (2007) EMBO Rep., 8, pp. 784-789
  • Yabe, T., Takada, S., Mesogenin causes embryonic mesoderm progenitors to differentiate during development of zebrafish tail somites (2012) Dev. Biol., 370, pp. 213-222
  • Yasuhiko, Y., Haraguchi, S., Kitajima, S., Takahashi, Y., Kanno, J., Saga, Y., Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 3651-3656
  • Yu, S.R., Burkhardt, M., Nowak, M., Ries, J., Petrásek, Z., Scholpp, S., Schwille, P., Brand, M., Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules (2009) Nature, 461, pp. 533-536

Citas:

---------- APA ----------
Bajard, L., Morelli, L.G., Ares, S., Pécréaux, J., Jülicher, F. & Oates, A.C. (2014) . Wnt-regulated dynamics of positional information in zebrafish somitogenesis. Development (Cambridge), 141(6), 1381-1391.
http://dx.doi.org/10.1242/dev.093435
---------- CHICAGO ----------
Bajard, L., Morelli, L.G., Ares, S., Pécréaux, J., Jülicher, F., Oates, A.C. "Wnt-regulated dynamics of positional information in zebrafish somitogenesis" . Development (Cambridge) 141, no. 6 (2014) : 1381-1391.
http://dx.doi.org/10.1242/dev.093435
---------- MLA ----------
Bajard, L., Morelli, L.G., Ares, S., Pécréaux, J., Jülicher, F., Oates, A.C. "Wnt-regulated dynamics of positional information in zebrafish somitogenesis" . Development (Cambridge), vol. 141, no. 6, 2014, pp. 1381-1391.
http://dx.doi.org/10.1242/dev.093435
---------- VANCOUVER ----------
Bajard, L., Morelli, L.G., Ares, S., Pécréaux, J., Jülicher, F., Oates, A.C. Wnt-regulated dynamics of positional information in zebrafish somitogenesis. Development. 2014;141(6):1381-1391.
http://dx.doi.org/10.1242/dev.093435