Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We have analyzed electromagnetic wave propagation in photonic bandgap (PBG) structures comprising alternating layers of isotropic dielectric-magnetic materials with positive phase velocity and negative phase velocity, implemented in different waveguides of uniform cross-section (parallel-plate, rectangular, circular, and coaxial) and perfectly conducting walls. The structures could be either ideal (i.e. of infinite extent along the waveguide axis) or real (i.e. terminated at both ends with homogeneously filled waveguide sections). The spectral locations of the band gaps do not directly depend on the cross-sectional shape and dimensions, but on the cut-off parameter instead, for ideal structures. The band gaps of an ideal structure are located in spectral regions where the reflectance of the corresponding real structure is large. The real structures show four types of band gaps, only one type of which is due to the periodically repetitive constitution of the PBG structure; the remaining three types are not of the Bragg type.

Registro:

Documento: Artículo
Título:Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides
Autor:Gómez, A.; Martínez Ricci, M.L.; Depine, R.A.; Lakhtakia, A.
Filiación:Grupo de Electromagnetismo Computacional, Departamento de Electricidad y Electrónica, Universidad de Valladolid, Paseo Prado de la Magdalena s/n, 47011 Valladolid, Spain
Grupo de Electromagnetismo Aplicado, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1, 1428 Buenos Aires, Argentina
NanoMM-Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States
Palabras clave:Circular waveguides; Coaxial waveguides; Gap map; Negative phase velocity; Parallel-plate waveguide; Photonic band gap; Rectangular waveguide; Alternating layers; Band gaps; Coaxial waveguides; Cross-sectional shape; Cut-off; Dielectric-magnetic material; Gap map; Negative phase velocity; Parallel plate waveguide; Parallel plates; PBG structure; Perfectly conducting walls; Photonic band-gap structures; Photonic bandgap materials; Real structure; Spectral region; Waveguide axis; Antennas; Circular waveguides; Dielectric materials; Dielectric waveguides; Electromagnetic waves; Energy gap; Magnetic materials; Optical devices; Phase velocity; Plates (structural components); Production platforms; Rectangular waveguides; Velocity; Waveguide circulators; Photonic band gap
Año:2009
Volumen:56
Número:15
Página de inicio:1688
Página de fin:1697
DOI: http://dx.doi.org/10.1080/09500340903289128
Título revista:Journal of Modern Optics
Título revista abreviado:J. Mod. Opt.
ISSN:09500340
CODEN:JMOPE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09500340_v56_n15_p1688_Gomez

Referencias:

  • Joannopulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D., (2008) Photonic Crystals: Molding the Flow of Light, , 2nd ed, Princeton University Press: Princeton, NJ, USA
  • Felbacq, D., Zolla, F., Scattering theory of periodic crystals (2003) Introduction to Complex Mediums for Optics and Electromagnetics, pp. 365-393. , Weiglhofer, W.S, Lakhtakia, A, Eds, SPIE Press: Bellingham, WA, USA
  • Haus, J.W., Photonic band gap structures (2004) Nanometer Structures: Theory, Modeling and Simulation, pp. 45-106. , Lakhtakia, A, Ed, SPIE Press: Bellingham, WA, USA
  • Russel, P.S.J., Tredwell, S., Roberts, P.J., (1990) Opt. Commun, 160, pp. 66-71
  • Chigrin, D.N., Lavrinenko, A.V., Yarotsky, D.A., Gaponenko, S.V., (1999) Appl. Phys. A, 68, pp. 25-28
  • Lodahl, P., Floris van Driel, A., Nikolaev, I.S., Irman, A., Overgaag, K., Vanmaekelbergh, D., Vos, W.L., (2004) Nature, 430, pp. 654-657
  • Baumeister, P.W., (2004) Optical Coating Technology, , SPIE Press: Bellingham, WA, USA
  • Srivastava, S.K., Ojha, S.P., Ramesh, K.S., (2002) Microw. Opt. Technol. Lett, 33, pp. 308-314
  • Gomez, A., Solano, M.A., Lakhtakia, A., Vegas, A., (2003) Proc. SPIE, 5218, pp. 191-200
  • Veselago, V.G. Soviet Phys. Usp. 1968, 10, 509-514, [Usp. Fiz. Nauk. 1967, 92, 517-526]; Shelby, R.A., Smith, D.R., Schultz, S., (2001) Science, 292, pp. 77-79
  • Caloz, C., Itoh, T., (2006) Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, , Wiley: Hoboken, NJ, USA
  • Wood, B., (2007) Laser Photon, 1, pp. 249-259. , Rev
  • Depine, R.A., Lakhtakia, A., (2004) Microw. Opt. Technol. Lett, 41, pp. 315-317
  • Lakhtakia, A., McCall, M.W., Weiglhofer, W.S., (2002) AEÜ Int. J. Electron. Commun, 56, pp. 407-410
  • Pendry, J.B., (2000) Phys. Rev. Lett, 85, pp. 3966-3969
  • Wu, L., He, S., Shen, L., (2003) Phys. Rev. B, 67, p. 235103
  • Li, J., Zhou, L., Chan, C.T., Sheng, P., (2003) Phys. Rev. Lett, 90, p. 083901
  • Ruppin, R., (2003) Microw. Opt. Technol. Lett, 38, pp. 494-495
  • Lakhtakia, A., (2002) Int. J. Infrared Millim. Waves, 23, pp. 339-343
  • Ramm, A., (2008) Phys. Lett. A, 372, pp. 6518-6520
  • D'Aguanno, G., Mattiucci, N., Bloemer, M.J., (2008) J. Opt. Soc. Am. B, 25, pp. 236-246
  • Depine, R.A., Martínez-Ricci, M.L., Monsoriu, J.A., Silvestre, E., Andrés, P., (2007) Phys. Lett. A, 364, pp. 352-355
  • Monsoriu, J.A., Depine, R.A., Martínez-Ricci, M.L., Silvestre, E., (2006) Opt. Express, 14, pp. 12958-12967
  • Dolling, G., Wegener, M., Soukoulis, C.M., Linden, S., (2007) Opt. Lett, 32, pp. 53-55
  • Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H., Giessen, H., (2008) Nature Mater, 7, pp. 31-37
  • Jen, Y.-J., Lakhtakia, A., Yu, C.-W., Lin, C.-T., (2009) Opt. Express, 17, pp. 7784-7789
  • Peacock, A.C., Broderick, N.G.R., (2003) Opt. Express, 11, pp. 2502-2510
  • Shadrivov, I.V., Sukhorukov, A.A., Kivshar, Y.S., (2003) Phys. Rev. E, 67, p. 057602
  • Depine, R.A., Martínez-Ricci, M.L., Lakhtakia, A., (2006) Microw. Opt. Technol. Lett, 48, pp. 2365-2372
  • Collin, R.E., (1991) Field Theory of Guided Waves, , 2nd ed, IEEE Press: Piscataway, NJ, USA, Chapter 5
  • Jackson, J.D., (1999) Classical Electrodynamics, , 3rd ed.;Wiley: New York, USA, Chapter 8
  • Kittel, C., (1971) Introduction to Solid State Physics, , 4th ed.;Wiley Eastern: New Delhi, India
  • Gomez, A., Lakhtakia, A., Solano, M.A., Vegas, A., (2003) Microw. Opt. Technol. Lett, 38, pp. 511-514
  • Solano, M.A., Gómez, A., Lakhtakia, A., Vegas, A., (2005) Int. J. Electron, 92, pp. 117-130
  • Gómez, A., Solano, M.A., Lakhtakia, A., Vegas, A., (2003) Microw. Opt. Technol. Lett, 37, pp. 316-321
  • Abelés, F., (1950) Ann. Phys. (Paris), 5, pp. 596-640
  • Griffiths, D.J., Steinke, C.A., (2001) Am. J. Phys, 69, pp. 137-154
  • Collin, R.E., (1992) Foundations for Microwave Engineering, , 2nd ed, McGraw-Hill: New York, Chapter 4
  • Van Blaricum, G.F., Mittra, R., (1969) IEEE Trans. Microwave Theory Tech, 17, pp. 310-319

Citas:

---------- APA ----------
Gómez, A., Martínez Ricci, M.L., Depine, R.A. & Lakhtakia, A. (2009) . Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides. Journal of Modern Optics, 56(15), 1688-1697.
http://dx.doi.org/10.1080/09500340903289128
---------- CHICAGO ----------
Gómez, A., Martínez Ricci, M.L., Depine, R.A., Lakhtakia, A. "Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides" . Journal of Modern Optics 56, no. 15 (2009) : 1688-1697.
http://dx.doi.org/10.1080/09500340903289128
---------- MLA ----------
Gómez, A., Martínez Ricci, M.L., Depine, R.A., Lakhtakia, A. "Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides" . Journal of Modern Optics, vol. 56, no. 15, 2009, pp. 1688-1697.
http://dx.doi.org/10.1080/09500340903289128
---------- VANCOUVER ----------
Gómez, A., Martínez Ricci, M.L., Depine, R.A., Lakhtakia, A. Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides. J. Mod. Opt. 2009;56(15):1688-1697.
http://dx.doi.org/10.1080/09500340903289128