Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The binding of NO to the iron heme in guanylate cyclase and other heme proteins induces the cleavage of the proximal histidine bonded to the metal. In this study we assess by means of density functional theory (DFT) electronic structure calculations the role of H-bonding to histidine in the modulation of this effect. We have considered in the first place a model of the isolated active site coordinated with imidazole and imidazolate to mimic the effects of a very strong H-bond. We have also investigated four selected ferrous heme proteins with different proximal histidine environments: the O2 sensing FixL, horseradish peroxidase C, and the α and β subunits of human hemoglobin. Our results indicate that polarization and charge transfer effects associated with H-bonding to the proximal histidine play a fundamental role in the modulation of the NO trans effect in heme proteins. We also find computational evidence suggesting that protein structural constraints may affect significantly the cleavage of the Fe-His bond.

Registro:

Documento: Artículo
Título:Modulation of the NO trans effect in heme proteins: Implications for the activation of soluble guanylate cyclase
Autor:Martí, M.A.; Scherlis, D.A.; Doctorovich, F.A.; Ordejón, P.; Estrin, D.A.
Filiación:Depto. Quim. Inorg. A. Quim. Fis., Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Inst. Cie. de Mat. de Barcelona-CSIC, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
Palabras clave:Density functional theory; Guanylate cyclase; Heme proteins; Nitric oxide trans effect; guanylate cyclase; hemoglobin; hemoglobin alpha chain; hemoglobin beta chain; hemoprotein; histidine; horseradish peroxidase; horseradish peroxidase c; imidazole derivative; iron; nitric oxide; oxygen; soluble guanylate cyclase; unclassified drug; article; density functional theory; enzyme activation; enzyme active site; geometry; hydrogen bond; model; polarization; priority journal; protein binding; protein degradation; protein structure; Binding Sites; Enzyme Activation; Guanylate Cyclase; Heme; Hemeproteins; Histidine; Humans; Hydrogen Bonding; Imidazoles; Models, Chemical; Nitric Oxide; Solubility; Armoracia rusticana
Año:2003
Volumen:8
Número:6
Página de inicio:595
Página de fin:600
DOI: http://dx.doi.org/10.1007/s00775-003-0452-9
Título revista:Journal of Biological Inorganic Chemistry
Título revista abreviado:J. Biol. Inorg. Chem.
ISSN:09498257
CODEN:JJBCF
CAS:guanylate cyclase, 9054-75-5; hemoglobin, 9008-02-0; histidine, 645-35-2, 7006-35-1, 71-00-1; iron, 14093-02-8, 53858-86-9, 7439-89-6; nitric oxide, 10102-43-9; oxygen, 7782-44-7; Guanylate Cyclase, EC 4.6.1.2; Heme, 14875-96-8; Hemeproteins; Histidine, 71-00-1; Imidazoles; Nitric Oxide, 10102-43-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09498257_v8_n6_p595_Marti

Referencias:

  • Koshland D.E., Jr., (1992) Science, 258, p. 199
  • Marietta, M.A., (1994) Cell, 78, pp. 927-930
  • Stone, J.R., Marietta, M.A., (1994) Biochemistry, 33, pp. 5636-5640
  • Stone, J.R., Marietta, M.A., (1995) Biochemistry, 34, pp. 14668-14674
  • Ignarro, L.J., (1982) Proc Natl Acad Sci USA, 79, pp. 2870-2873
  • Traylor, T.G., Sharma, V.S., (1992) Biochemistry, 31, pp. 2847-2849
  • Stone, J.R., Marietta, M.A., (1996) Biochemistry, 35, pp. 1093-1099
  • Schelvis, J.P.M., Seibold, S.A., Cerda, J.F., Garavito, R.M., Babcock, G.T., (2000) J Phys Chem B, 104, pp. 10844-10850
  • Scherlis, D.A., Estrin, D.A., (2001) J Am Chem Soc, 123, pp. 8436-8438
  • Scherlis, D.A., Cymeryng, C.B., Estrin, D.A., (2000) Inorg Chem, 239, pp. 2352-2359
  • Ghosh, A., Wondimagegn, T., (2000) J Am Chem Soc, 122, pp. 8101-8102
  • Siegbahn, P.E.M., Blomberg, M.R.A., (2000) Chem Rev, 100, pp. 421-437
  • Sigfridsson, E., Ryde, U., (1999) J Biol Inorg Chem, 4, pp. 99-110
  • Carloni, P., Rothlisberger, U., Parrinello, M., (2002) Acc Chem Res, 35, pp. 455-464
  • Rovira, C., Sculze, B., Eichinger, M., Evanseck, J.D., Parrinello, M., (2001) Biophys J, 81, pp. 435-445
  • Rovira, C., Kunc, K., Hutter, J., Ballone, P., Parrinello, M., (1997) J Phys Chem A, 101, pp. 8914-8925
  • Stanton, R.V., Peraekylae, M., Bakowies, D., Kollman, P.A., (1998) J Am Chem Soc, 120, pp. 3448-3457
  • Mignon, P., Steyaert, J., Loris, R., Geerlings, P., Loverix, S., (2003) J Biol Chem, , in press
  • Okimoto, N., Yamanaka, K., Ueno, J., Hata, M., Hoshiro, T., Tsuda, M., (2001) Biophys J, 81, pp. 2786-2794
  • Soler, J.M., Artacho, E., Gale, J., Garcia, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J Phys Condens Matter, 14, pp. 2745-2779
  • Ordejón, P., Artacho, E., Soler, J.M., (1996) Phys Rev B, 53, pp. 10441-10444
  • Sánchez-Portal, D., Ordejón, P., Artacho, E., Soler, J.M., (1997) Int J Quantum Chem, 65, pp. 453-461
  • Ordejón, P., (2000) Phys Status Solidi B, 217, pp. 335-356
  • Troullier, N., Martins, J.L., (1991) Phys Rev B, 43, pp. 1993-2006
  • Louie, S.G., Froyen, S., Cohen, M.L., (1982) Phys Rev B, 26, pp. 1738-1742
  • Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys Rev Lett, 77, pp. 3865-3868
  • Gilles-Gonzalez, M.A., Ditta, G., Helinski, D.R., (1991) Nature, 350, pp. 170-172
  • Gilles-Gonzalez, M.A., Gonzalez, G., Perutz, M.F., Kiger, L., Marden, M., Poyart, C., (1994) Biochemistry, 33, pp. 8067-8073
  • Gajhede, M., Schuller, D.J., Henriksen, A., Smith, A.T., Poulos, T.L., (1997) Nat Struct Biol, 4, pp. 1032-1038
  • Henriksen, A., Schuller, D.J., Meno, K., Welinder, K.G., Smith, A.T., Gajhede, M., (1998) Biochemistry, 37, pp. 8054-8060
  • Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz K.M., Jr., Ferguson, D.M., Spellmeyer, D.C., Kollman, P.A., (1995) J Am Chem Soc, 117, pp. 5179-5197
  • Lukat-Rodgers, G.S., Rodgers, K.R., (1997) Biochemistry, 36, pp. 4178-4187
  • Nagai, K., Welborn, C., Dolphin, D., Kitagawa, T., (1980) Biochemistry, 19, pp. 4755-4761
  • Ascenzi, P., Brunori, M., Coletta, M., Desideri, A., (1989) Biochem J, 258, pp. 473-478
  • Schelvis, J.P.M., Zhao, Y., Marletta, M.A., Babcock, G.T., (1998) Biochemistry, 37, pp. 16289-16297

Citas:

---------- APA ----------
Martí, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejón, P. & Estrin, D.A. (2003) . Modulation of the NO trans effect in heme proteins: Implications for the activation of soluble guanylate cyclase. Journal of Biological Inorganic Chemistry, 8(6), 595-600.
http://dx.doi.org/10.1007/s00775-003-0452-9
---------- CHICAGO ----------
Martí, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejón, P., Estrin, D.A. "Modulation of the NO trans effect in heme proteins: Implications for the activation of soluble guanylate cyclase" . Journal of Biological Inorganic Chemistry 8, no. 6 (2003) : 595-600.
http://dx.doi.org/10.1007/s00775-003-0452-9
---------- MLA ----------
Martí, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejón, P., Estrin, D.A. "Modulation of the NO trans effect in heme proteins: Implications for the activation of soluble guanylate cyclase" . Journal of Biological Inorganic Chemistry, vol. 8, no. 6, 2003, pp. 595-600.
http://dx.doi.org/10.1007/s00775-003-0452-9
---------- VANCOUVER ----------
Martí, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejón, P., Estrin, D.A. Modulation of the NO trans effect in heme proteins: Implications for the activation of soluble guanylate cyclase. J. Biol. Inorg. Chem. 2003;8(6):595-600.
http://dx.doi.org/10.1007/s00775-003-0452-9