Artículo

Ramos, L.C.B.; Rodrigues, F.P.; Biazzotto, J.C.; de Paula Machado, S.; Slep, L.D.; Hamblin, M.R.; da Silva, R.S. "Targeting the mitochondrial VDAC in hepatocellular carcinoma using a polyclonal antibody-conjugated to a nitrosyl ruthenium complex" (2018) Journal of Biological Inorganic Chemistry. 23(6):903-916
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The rational design of anti-cancer agents includes a new approach based on ruthenium complexes that can act as nitric oxide (NO) donor agents against specific cellular targets. One of the most studied classes of those compounds is based on bis(bipyridine) ruthenium fragment and its derivative species. In this work, we present the chemical and cytotoxicity properties against the liver hepatocellular carcinoma cell line HepG2 of cis-[RuII(NO+)Cl(dcbpy)2]2− conjugated to a polyclonal antibody IgG (anti-VDAC) recognizing a cell surface marker. UV–visible bands of the ruthenium complex were assigned with the aid of density functional theory, which also allowed estimation of the structures that explain the biological effects of the ruthenium complex–IgG conjugate. The interaction of cis-[RuII(NO+)Cl(dcbpy)2]3− with mitochondria was evaluated due to the potential of these organelles as anti-cancer targets, and considering they interact with the anti-VDAC antibody. The cytotoxicity of cis-[RuII(NO+)Cl(dcbpy)2]3−-anti-VDAC antibody was up to 80% greater in comparison to the free cis-[RuII(NO+)Cl(dcbpy)2]3− complex. We suggest that this effect is due to site-specific interaction of the complex followed by NO release. © 2018, SBIC.

Registro:

Documento: Artículo
Título:Targeting the mitochondrial VDAC in hepatocellular carcinoma using a polyclonal antibody-conjugated to a nitrosyl ruthenium complex
Autor:Ramos, L.C.B.; Rodrigues, F.P.; Biazzotto, J.C.; de Paula Machado, S.; Slep, L.D.; Hamblin, M.R.; da Silva, R.S.
Filiación:Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Wellman Laboratories of Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States
Department of Dermatology, Harvard Medical School, Boston, MA 02115, United States
Palabras clave:Conjugated ruthenium-antibody complex; Nitric oxide delivery agent; Nitrosyl ruthenium complexes; 2,2' bipyridine derivative; antibody drug conjugate; cell surface marker; dicarboxylic acid derivative; immunoglobulin G antibody; nitric oxide; ruthenium complex; voltage dependent anion channel; animal cell; animal experiment; animal tissue; antineoplastic activity; Article; cell surface; comparative study; controlled study; cytotoxicity; density functional theory; drug targeting; Hep-G2 cell line; liver cell carcinoma; male; nonhuman; priority journal; protein targeting; rat
Año:2018
Volumen:23
Número:6
Página de inicio:903
Página de fin:916
DOI: http://dx.doi.org/10.1007/s00775-018-1589-x
Título revista:Journal of Biological Inorganic Chemistry
Título revista abreviado:J. Biol. Inorg. Chem.
ISSN:09498257
CODEN:JJBCF
CAS:nitric oxide, 10102-43-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09498257_v23_n6_p903_Ramos

Referencias:

  • Miller, M.R., Megson, I.L., Recent developments in nitric oxide donor drugs (2007) Br J Pharmacol, 151 (3), pp. 305-321. , PID: 17401442
  • Bonavida, B., (2010) Nitric oxide (NO) and cancer: prognosis, prevention, and therapy, , (ed), Springer Science and Business Media, New York
  • Serafim, R.A., Primi, M.C., Trossini, G.H., Ferreira, E.I., Nitric oxide: state of the art in drug design (2012) Curr Med Chem, 19 (3), pp. 386-405. , PID: 22335514
  • Tfouni, E., Truzzi, D.R., Tavares, A., Gomes, A.J., Figueiredo, L.E., Franco, D.W., Biological activity of ruthenium nitrosyl complexes (2012) Nitric Oxide, 26 (1), pp. 38-53. , PID: 22178685
  • de Lima, R.G., Silva, B.R., da Silva, R.S., Bendhack, L.M., Ruthenium complexes as NO donors for vascular relaxation induction (2014) Molecules, 19 (7), pp. 9628-9654. , PID: 25004072
  • Szabo, C., Gasotransmitters in cancer: from pathophysiology to experimental therapy (2016) Nat Rev Drug Discovery, 15, pp. 185-203. , PID: 26678620
  • Lundberg, J.O., Gladwin, M.T., Weitzberg, E., Strategies to increase nitric oxide signalling in cardiovascular disease (2015) Nat Rev Drug Discov, 14 (9), pp. 623-641. , PID: 26265312
  • Paulo, M., Banin, T.M., de Andrade, F.A., Bendhack, L.M., Enhancing vascular relaxing effects of nitric oxide-donor ruthenium complexes (2014) Future Med Chem, 6 (7), pp. 825-838. , PID: 24941875
  • Liu, J., Duan, Q., Wang, J., Song, Z., Qiao, X., Wang, H., Photocontrolled nitric oxide release from two nitrosylruthenium isomer complexes and their potential biomedical applications (2015) J Biomed Opt, 20 (1), p. 015004. , PID: 25621873
  • Carneiro, Z.A., Biazzotto, J.C., Alexiou, A.D., Nikolaou, S., Nitric oxide photorelease from a trinuclear ruthenium nitrosyl complex and its in vitro cytotoxicity against melanoma cells (2014) J Inorg Biochem, 134, pp. 36-38. , PID: 24522147
  • Castro, P.F.D.S., Andrade, D.L., Reis, C.D.F., Costa, S.H.N., Batista, A.C., Silva, R.S., Rocha, M.L., Relaxing effect of a new ruthenium complex nitric oxide donor on airway smooth muscle of an experimental model of asthma in rats (2016) Clin Exp Pharmacol Physiol, 43 (2), pp. 221-229. , PID: 26662887
  • Rodrigues, F.P., Carneiro, Z.A., Mascharak, P., Curti, C., da Silva, R.S., Incorporation of a ruthenium nitrosyl complex into liposomes, the nitric oxide released from these liposomes and HepG2 cell death mechanism (2016) Coord Chem Rev, 306, pp. 701-707
  • Ramos, L.C.B., Marchesi, M.S.P., Callejon, D., Baruffi, M.D., Lunardi, C.N., Slep, L.D., Bendhack, L.M., da Silva, R.S., Enhanced antitumor activity against melanoma cancer cells by nitric oxide release and photosensitized generation of singlet oxygen from ruthenium complexes (2016) Eur J Inorg Chem, 22, pp. 3592-3597
  • Negri, L.B., Martins, T.J., Ramos, L.C.B., da Silva, R.S., Nitric oxide derivative ruthenium compounds as NO-based chemotherapeutic and phototherapeutic agents (2017) Nitric oxide donors: novel biomedical applications and perspectives, pp. 1-24. , Sebara AB, (ed), 1, Elsevier, New York
  • Toledo, J.C., de França Lopes, L.G., Alves, A.A., da Silva, L.P., Franco, D.W., Release of NO by a nitrosyl complex upon activation by the mitochondrial reducing power (2002) J Inorg Biochem, 89 (3), pp. 267-271. , PID: 12062131
  • Rodrigues, F.P., Pestana, C.R., Polizello, A.C., Pardo-Andreu, G.L., Uyemura, S.A., Santos, A.C., Alberici, L.C., Curti, C., Release of NO from a nitrosyl ruthenium complex through oxidation of mitochondrial NADH and effects on mitochondria (2012) Nitric Oxide, 26 (3), pp. 174-181. , PID: 22349020
  • Pereira, A.D.C., Ford, P.C., da Silva, R.S., Bendhack, L.M., Ruthenium-nitrite complex as pro-drug releases NO in a tissue and enzyme-dependent way (2011) Nitric Oxide, 24 (4), pp. 192-198
  • Fry, N.L., Mascharak, P.K., Photoactive ruthenium nitrosyls as NO donors: how to sensitize them toward visible light (2011) Acc Chem Res, 44 (4), pp. 289-298. , PID: 21361269
  • Smith, N.A., Sadler, P.J., Photoactivatable metal complexes: from theory to applications in biotechnology and medicine (2013) Philos Trans R Soc A, 371, p. 20120519
  • da Silva, R.S., Marchesi, M.S., Khin, C., Lunardi, C.N., Bendhack, L.M., Ford, P.C., Photoinduced electron transfer between the cationic complexes [Ru(NH3)5pz]2+ and trans-[RuCl([15]aneN4)NO]+ mediated by phosphate ion: visible light generation of nitric oxide for biological targets (2007) J Phys Chem B, 111 (24), pp. 6962-6968. , PID: 17439277
  • Cicillini, S.A., Prazias, A.C.L., Tedesco, A.C., Serra, O.A., da Silva, R.S., Nitric oxide and singlet oxygen photo-generation by light irradiation in the phototherapeutic window of a nitrosyl ruthenium conjugated with a phthalocyanine rare earth complex (2009) Polyhedron, 28 (13), pp. 2766-2770
  • Da Rocha, Z.N., Marchesi, M.S.P., Molin, J.C., Lunardi, C.N., Miranda, K.M., Bendhack, L.M., Ford, P.C., da Silva, R.S., The inducing NO-vasodilation by chemical reduction of coordinated nitrite ion in cis-[Ru(NO2)L(bpy)2]+ complex (2008) Dalton Trans, 32, pp. 4282-4287
  • Sarniguet, C., Toloza, J., Cipriani, M., Lapier, M., Vieites, M., Toledano-Magaña, Y., García-Ramos, J.C., Otero, L., Water-soluble ruthenium complexes bearing activity against protozoan parasites (2014) Biol Trace Elem Res, 159 (1-3), pp. 379-392. , PID: 24740394
  • Sesti-Costa, R., Carneiro, Z.A., Silva, M.C., Santos, M., Silva, G.K., Milanezi, C., da Silva, R.S., Silva, J.S., Ruthenium complex with benznidazole and nitric oxide as a new candidate for the treatment of chagas disease (2014) PLoS Negl Trop Dis, 8 (10), p. 3207
  • Iniguez, E., Sánchez, A., Vasquez, M.A., Martínez, A., Olivas, J., Sattler, A., Sánchez-Delgado, R.A., Maldonado, R.A., Metal–drug synergy: new ruthenium (II) complexes of ketoconazole are highly active against Leishmania major and Trypanosoma cruzi and nontoxic to human or murine normal cells (2013) J Biol Inorg Chem, 18 (7), pp. 779-790. , PID: 23881220
  • Ridnour, L.A., Thomas, D.D., Switzer, C., Flores-Santana, W., Isenberg, J.S., Ambs, S., Roberts, D.D., Wink, D.A., Molecular mechanisms for discrete nitric oxide levels in cancer (2008) Nitric Oxide, 19 (2), pp. 73-76. , PID: 18472020
  • Thomas, D.D., Ridnour, L.A., Isenberg, J.S., Flores-Santana, W., Switzer, C.H., Donzelli, S., Colton, C., Wink, D.A., The chemical biology of nitric oxide: implications in cellular signaling (2008) Free Radic Biol Med, 45 (1), pp. 18-31. , PID: 18439435
  • Stevens, E.V., Wells, A., Shin, J.H., Liu, J., Der, C.J., Schoenfisch, M.H., Nitric oxide-releasing silica nanoparticle inhibition of ovarian cancer cell growth (2010) Mol Pharm, 7 (3), pp. 775-785. , PID: 20205473
  • Hirst, D., Robson, T., Targeting nitric oxide for cancer therapy (2007) J Pharm Pharmacol, 59 (1), pp. 3-13. , PID: 17227615
  • Xiang, H.J., Deng, Q., An, L., Guo, M., Yang, S.P., Liu, J.G., Tumor cell specific and lysosome-targeted delivery of nitric oxide for enhanced photodynamic therapy triggered by 808 nm near-infrared light (2016) Chem Commun, 52 (1), pp. 148-151
  • Park, J., Pramanick, S., Kim, J., Leeab, J., Kim, W.J., Nitric oxide-activatable gold nanoparticles for specific targeting and photo-thermal ablation of macrophages (2017) Chem Commun, 53 (81), pp. 11229-11232
  • Safdar, S., Payne, C.A., Tu, N.H., Taite, L.J., Targeted nitric oxide delivery preferentially induces glioma cell chemosensitivity via altered p53 and O6-methylguanine-DNA methyltransferase activity (2013) Biotechnol Bioeng, 110 (4), pp. 1211-1220. , PID: 23125026
  • Li, Y.H., Guo, M., Shi, S.W., Zhang, Q.L., Yang, S.P., Liu, J.G., A ruthenium-nitrosyl-functionalized nanoplatform for the targeting of liver cancer cells and NIR-light-controlled delivery of nitric oxide combined with photothermal therapy (2017) J Mater Chem B, 5 (38), pp. 7831-7838
  • Deng, Q., Xiang, H.J., Tang, W.W., An, L., Yang, S.P., Zhang, Q.L., Liu, J.G., Ruthenium nitrosyl grafted carbon dots as a fluorescence-trackable nanoplatform for visible light-controlled nitric oxide release and targeted intracellular delivery (2016) J Inorg Biochem, 165, pp. 152-158. , PID: 27324826
  • Wyland, K.R., Hoffman, E.E., Jain, A., DNA interaction studies and photoinduced ligand exchange kinetics of a sterically strained Ruthenium(II) complex (2017) Inorg Chim Acta, 454, pp. 62-66
  • Campagna, S., Puntoriero, F., Nastasi, F., Bergamini, G., Balzani, V., Photochemistry and photophysics of coordination compounds: ruthenium (2007) Photochemistry and photophysics of coordination compounds I, pp. 117-214. , Balzani V, Campagna S, (eds), Springer, Berlin
  • Sauaia, M.G., de Lima, R.G., Tedesco, A.C., da Silva, R.S., Nitric oxide production by visible light irradiation of aqueous solution of nitrosyl ruthenium complexes (2005) Inorg Chem, 44 (26), pp. 9946-9951. , PID: 16363866
  • Meyer, T.J., Godwin, J.B., Preparation of ruthenium nitrosyl complexes containing 2, 2′-bipyridine and 1, 10-phenanthroline (1971) Inorg Chem, 10 (3), pp. 471-474
  • Sauaia, M.G., Oliveira, F.S., Tedesco, A.C., da Silva, R.S., Control of NO release by light irradiation from nitrosyl-ruthenium complexes containing polypyridyl ligands (2003) Inorg Chim Acta, 355, pp. 191-196
  • Ghosh, K., Kumar, S., Kumar, R., Synthesis and characterization of a novel ruthenium nitrosyl complex and studies on photolability of coordinated NO (2011) Inorg Chem Commun, 14 (1), p. 146
  • Elmore, S., Apoptosis: a review of programmed cell death (2007) Toxicol Pathol, 35 (4), pp. 495-516. , PID: 17562483
  • Grau-Campistany, A., Massaguer, A., Carrion-Salip, D., Barragán, F., Artigas, G., López-Senín, P., Moreno, V., Marchán, V., Conjugation of a Ru(II) arene complex to neomycin or to guanidinoneomycin leads to compounds with differential cytotoxicities and accumulation between cancer and normal cells (2013) Mol Pharm, 10 (5), pp. 1964-1976. , PID: 23510087
  • Wang, T., Zabarska, N., Wu, Y., Lamla, M., Fischer, S., Monczak, K., Ng, D.Y.W., Weil, T., Receptor selective ruthenium-somatostatin photosensitizer for cancer targeted photodynamic applications (2015) Chem Commun, 51, pp. 12552-12555
  • Becke, A.D.J., Density functional calculations of molecular bond energies (1988) J Chem Phys, 84, pp. 4524-4529
  • Becke, A.D.J., Density-functional thermochemistry. III. The role of exact exchange (1993) J Chem Phys, 98, pp. 5648-5652
  • Lee, C., Yang, W., Parr, R.G., Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density (1988) Phys Rev B, 37 (2), pp. 785-789
  • Perdew, J.P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas (1986) Phys Rev B, 33, pp. 8822-8824
  • Dunning, T.H., Jr., Hay, P.J., Modern theoretical chemistry (1976) Modern theoretical chemistry, pp. 1-28. , Schaefer HF, (ed), Plenum, New York
  • Hay, P.J., Wadt, W.R.J., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg (1985) J Chem Phys, 82, pp. 270-283
  • Hay, P.J., Wadt, W.R.J., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals (1985) J Chem Phys, 82, pp. 299-310
  • Wadt, W.R., Hay, P.J.J., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi (1985) J Chem Phys, 82, pp. 284-298
  • Pedersen, P.L., Greenawalt, J.W., Reynafarje, B., Hullihen, J., Decker, G.L., Soper, J.W., Bustamente, E., Preparation and characterization of mitochondria and submitochondrial particles of rat liver and liver-derived tissues (1978) Methods Cell Biol, 20, pp. 411-481. , PID: 151184
  • Åkerman, K.E., Wikström, M.K., Safranine as a probe of the mitochondrial membrane potential (1976) FEBS Lett, 68 (2), pp. 191-197. , PID: 976474
  • Wrona, M., Patel, K., Wardman, P., Reactivity of 2′, 7′-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals (2005) Free Radic Biol Med, 38 (2), pp. 262-270. , PID: 15607909
  • Blondin, G.A., Green, D.E., The mechanism of mitochondrial swelling (1967) Proc Natl Acad Sci USA, 58 (2), pp. 612-619. , PID: 5233462
  • Terpetschnig, E., Szmacinski, H., Malak, H., Lakowicz, J.R., Metal–ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics (1995) Biophys J, 68 (1), pp. 342-350. , PID: 7711260
  • Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J Immunol Methods, 65, pp. 55-63. , PID: 6606682
  • Tfouni, E., Krieger, M., McGarvey, B.R., Franco, D.W., Structure, chemical and photochemical reactivity and biological activity of some ruthenium amine nitrosyl complexes (2003) Coord Chem Rev, 236 (1-2), pp. 57-69
  • Caramori, G.F., Frenking, G., The nature of the Ru–NO bond in ruthenium tetraammine nitrosyl complexes (2007) Organometallics, 26 (24), pp. 5815-5825
  • Videla, M., Jacinto, J.S., Baggio, R., Garland, M.T., Singh, P., Kaim, W., Slep, L.D., Olabe, J.A., Structure, spectroscopy, and electrophilic and nucleophilic reactivities of bound nitrosyl (2006) Inorg Chem, 45, pp. 8608-8617. , PID: 17029371
  • Cohen, A.J., Mori-Sánchez, P., Yang, W., Insights into current limitations of density functional theory (2008) Science, 321 (5890), pp. 792-794. , PID: 18687952
  • Coropceanu, V., Malagoli, M., André, J.M., Brédas, J.L., Charge-transfer transitions in triarylamine mixed-valence systems: a joint density functional theory and vibronic coupling study (2002) J Am Chem Soc, 124 (35), pp. 10519-10530. , PID: 12197754
  • Renz, M., Kaupp, M., Predicting the localized/delocalized character of mixed-valence diquinone radical anions. Toward the right answer for the right reason (2012) J Phys Chem A, 116 (43), pp. 10629-10637. , PID: 23025699
  • Shimidzu, T., Iyoda, T., Izaki, K., Photoelectrochemical properties of bis (2,2′-bipyridine)(4,4′-dicarboxy-2,2′-bipyridine) ruthenium(II) chloride (1985) J Phys Chem, 89 (4), pp. 642-645
  • Borges, S.D.S., Davanzo, C.U., Castellano, E.E., Zukerman-Schpector, J., Silva, S.C., Franco, D.W., Ruthenium nitrosyl complexes with N-heterocyclic ligands (1998) Inorg Chem, 37 (11), pp. 2670-2677. , PID: 11670402
  • Calandreli, I., Oliveira, F.D., Liang, G.G., da Rocha, Z.N., Tfouni, E., Synthesis and characterization of trans-[Ru(NO)Cl(L)4](PF6)2(L = isonicotinamide; 4-acetylpyridine) and related species (2009) Inorg Chem Commun, 12 (7), pp. 591-595
  • Sauaia, M.G., da Silva, R.S., The reactivity of nitrosyl ruthenium complexes containing polypyridyl ligands (2003) Transit Met Chem, 28 (3), pp. 254-259
  • Zoratti, M., Szabò, I., The mitochondrial permeability transition (1995) Biochim Biophys Acta, 1241 (2), pp. 139-176. , PID: 7640294
  • Halestrap, A.P., What is the mitochondrial permeability transition pore (2009) J Mol Cell Cardiol, 46 (6), pp. 821-831. , PID: 19265700
  • Petronilli, V., Cola, C., Massari, S., Colonna, R., Bernardi, P., Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria (1993) J Biol Chem, 268 (29), pp. 21939-21945. , PID: 8408050
  • Petronilli, V., Costantini, P., Scorrano, L., Colonna, R., Passamonti, S., Bernardi, P., The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents (1994) J Biol Chem, 269 (24), pp. 16638-16642. , PID: 7515881
  • Brown, G.C., Nitric oxide and mitochondria (2007) Front Biosci, 12 (6), pp. 1024-1033. , PID: 17127357
  • Brown, G.C., Borutaite, V., Nitric oxide, mitochondria, and cell death (2001) IUBMB Life, 52 (3-5), pp. 189-195. , PID: 11798032
  • Kroemer, G., Galluzzi, L., Brenner, C., Mitochondrial membrane permeabilization in cell death (2007) Physiol Rev, 87 (1), pp. 99-163. , PID: 17237344
  • Gogvadze, V., Orrenius, S., Zhivotovsky, B., Mitochondria as targets for chemotherapy (2009) Apoptosis, 14 (4), pp. 624-640. , PID: 19205885

Citas:

---------- APA ----------
Ramos, L.C.B., Rodrigues, F.P., Biazzotto, J.C., de Paula Machado, S., Slep, L.D., Hamblin, M.R. & da Silva, R.S. (2018) . Targeting the mitochondrial VDAC in hepatocellular carcinoma using a polyclonal antibody-conjugated to a nitrosyl ruthenium complex. Journal of Biological Inorganic Chemistry, 23(6), 903-916.
http://dx.doi.org/10.1007/s00775-018-1589-x
---------- CHICAGO ----------
Ramos, L.C.B., Rodrigues, F.P., Biazzotto, J.C., de Paula Machado, S., Slep, L.D., Hamblin, M.R., et al. "Targeting the mitochondrial VDAC in hepatocellular carcinoma using a polyclonal antibody-conjugated to a nitrosyl ruthenium complex" . Journal of Biological Inorganic Chemistry 23, no. 6 (2018) : 903-916.
http://dx.doi.org/10.1007/s00775-018-1589-x
---------- MLA ----------
Ramos, L.C.B., Rodrigues, F.P., Biazzotto, J.C., de Paula Machado, S., Slep, L.D., Hamblin, M.R., et al. "Targeting the mitochondrial VDAC in hepatocellular carcinoma using a polyclonal antibody-conjugated to a nitrosyl ruthenium complex" . Journal of Biological Inorganic Chemistry, vol. 23, no. 6, 2018, pp. 903-916.
http://dx.doi.org/10.1007/s00775-018-1589-x
---------- VANCOUVER ----------
Ramos, L.C.B., Rodrigues, F.P., Biazzotto, J.C., de Paula Machado, S., Slep, L.D., Hamblin, M.R., et al. Targeting the mitochondrial VDAC in hepatocellular carcinoma using a polyclonal antibody-conjugated to a nitrosyl ruthenium complex. J. Biol. Inorg. Chem. 2018;23(6):903-916.
http://dx.doi.org/10.1007/s00775-018-1589-x