Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are two heme-containing enzymes which catalyze the conversion of L-tryptophan to N-formylkynurenine (NFK). In mammals, TDO is mostly expressed in liver and is involved in controlling homeostatic serum tryptophan concentrations, whereas IDO is ubiquitous and is involved in modulating immune responses. Previous studies suggested that the first step of the dioxygenase reaction involves the deprotonation of the indoleamine group of the substrate by an evolutionarily conserved distal histidine residue in TDO and the hemebound dioxygen in IDO. Here, we used classical molecular dynamics and hybrid quantum mechanical/molecular mechanical methods to evaluate the base-catalyzed mechanism. Our data suggest that the deprotonation of the indoleamine group of the substrate by either histidine in TDO or heme-bound dioxygen in IDO is not energetically favorable. Instead, the dioxygenase reaction can be initiated by a direct attack of heme-bound dioxygen on the C 2=C 3 bond of the indole ring, leading to a protein-stabilized 2,3-alkylperoxide transition state and a ferryl epoxide intermediate, which subsequently recombine to generate NFK. The novel sequential two-step oxygen addition mechanism is fully supported by our recent resonance Raman data that allowed identification of the ferryl intermediate (Lewis-Ballester et al. in Proc Natl Acad Sci USA 106:17371-17376, 2009). The results reveal the subtle differences between the TDO and IDO reactions and highlight the importance of protein matrix in modulating stereoelectronic factors for oxygen activation and the stabilization of both transition and intermediate states. © SBIC 2010.

Registro:

Documento: Artículo
Título:The first step of the dioxygenation reaction carried out by tryptophan dioxygenase and indoleamine 2,3-dioxygenase as revealed by quantum mechanical/molecular mechanical studies
Autor:Capece, L.; Lewis-Ballester, A.; Batabyal, D.; Di Russo, N.; Yeh, S.-R.; Estrin, D.A.; Marti, M.A.
Filiación:Departamento de Química Inorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, United States
Palabras clave:3-dioxygenase; Indoleamine 2; Molecular dynamics; Quantum mechanics/molecular mechanics; Tryptophan dioxygenase; Tryptophan dioxygenation; formylkynurenine; histidine; indoleamine 2,3 dioxygenase; kynurenine; tryptophan 2,3 dioxygenase; unclassified drug; article; catalysis; chemical bond; chemical composition; chemical modification; chemical reaction kinetics; molecular mechanics; oxygenation; priority journal; proton transport; quantum mechanics; Amines; Biocatalysis; Electrons; Feasibility Studies; Humans; Indoleamine-Pyrrole 2,3,-Dioxygenase; Ligands; Molecular Dynamics Simulation; Oxygen; Protein Conformation; Protons; Quantum Theory; Tryptophan Oxygenase; Xanthomonas campestris; Mammalia
Año:2010
Volumen:15
Número:6
Página de inicio:811
Página de fin:823
DOI: http://dx.doi.org/10.1007/s00775-010-0646-x
Título revista:Journal of Biological Inorganic Chemistry
Título revista abreviado:J. Biol. Inorg. Chem.
ISSN:09498257
CODEN:JJBCF
CAS:formylkynurenine, 1022-31-7; histidine, 645-35-2, 7006-35-1, 71-00-1; kynurenine, 16055-80-4, 343-65-7; tryptophan 2,3 dioxygenase, 9014-51-1; Amines; Indoleamine-Pyrrole 2,3,-Dioxygenase, 1.13.11.42; Ligands; Oxygen, 7782-44-7; Protons; Tryptophan Oxygenase, 1.13.11.11
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09498257_v15_n6_p811_Capece

Referencias:

  • Lewis-Ballester, A., Batabyal, D., Egawa, T., Lu, C., Lin, Y., Marti, M.A., Capece, L., Yeh, S.R., (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 17371-17376
  • Sono, M., Roach, M.P., Coulter, E.D., Dawson, J.H., (1996) Chem. Rev., 96, pp. 2841-2888
  • Hayaishi, O., (1976) J. Biochem., 79, pp. 13-21
  • Forouhar, F., Anderson, J.L.R., Mowat, C.G., Vorobiev, S.M., Hussain, A., Abashidze, M., Bruckmann, C., Tong, L., (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 473-478
  • Greengard, O., Feigelson, P., (1962) J. Biol. Chem., 237, pp. 1903-1907
  • Yamamoto, S., Hayaishi, O., (1967) J. Biol. Chem., 242, pp. 5260-5266
  • Shimizu, T., Nomiyama, S., Hirata, F., Hayaishi, O., (1978) J. Biol. Chem., 253, pp. 4700-4706
  • Zhang, Y., Kang, S.A., Mukherjee, T., Bale, S., Crane, B.R., Begley, T.P., Ealick, S.E., (2007) Biochemistry, 46, pp. 145-155
  • Sugimoto, H., Oda, S.-I., Otsuki, T., Hino, T., Yoshida, T., Shiro, Y., (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 2611-2616
  • Friberg, M., Jennings, R., Alsarraj, M., Dessureault, S., Cantor, A., Extermann, M., Mellor, A.L., Antonia, S.J., (2002) Int. J. Cancer, 101, pp. 151-155
  • Muller, A.J., DuHadaway, J.B., Donover, P.S., Sutanto-Ward, E., Prendergast, G.C., (2005) Nat. Med., 11, pp. 312-319
  • Koyake, Y., Masayama, I., (1936) Z Physiol. Chem., 243, pp. 237-244
  • Chung, L.W., Li, X., Sugimoto, H., Shiro, Y., Morokuma, K., (2008) J. Am. Chem. Soc., 130, pp. 12299-12309
  • Batabyal, D., Yeh, S.R., (2007) J. Am. Chem. Soc., 129, pp. 15690-15701
  • Hamilton, G.A., (1969) Adv. Enzymol Relat. Areas Mol. Biol., 32, pp. 55-96
  • Leeds, J.M., Brown, P.J., McGeehan, G.M., Brown, F.K., Wiseman, J.S., (1993) J. Biol. Chem., 268, pp. 17781-17786
  • Ronsein, G.E., Oliveira, M.C.B., Miyamoto, S., Medeiros, M.H.G., Di Mascio, P., (2008) Chem. Res. Toxicol., 21, pp. 1271-1283
  • Terentis, A.C., Thomas, S.R., Takikawa, O., Littlejohn, T.K., Truscott, R.J.W., Armstrong, R.S., Yeh, S.-R.., Stocker, R., (2002) J. Biol. Chem., 277, pp. 15788-15794
  • Chauhan, N., Thackray, S.J., Rafice, S.A., Eaton, G., Lee, M., Efimov, I., Basran, J., Raven, E.L., (2009) J. Am. Chem. Soc., 131, pp. 4186-4187
  • Lu, C., Lin, Y., Yeh, S.-R., (2009) J. Am. Chem. Soc., 131, pp. 12866-12867
  • Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J., (1998) J. Comput Chem., 19, pp. 1639-1662
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., DeBolt, S., Ferguson, D., Kollman, P., (1995) Comput Phys. Commun., 91, pp. 1-41
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., (2006) Proteins, 65, pp. 712-725
  • Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C., (1977) J. Comput Phys., 23, pp. 327-341
  • Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R., (1984) J. Chem. Phys., 81, pp. 3684-3690
  • Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., (2006) J. Inorg Biochem., 100, pp. 761-770
  • Capece, L., Estrin, D.A., Marti, M.A., (2008) Biochemistry, 47, pp. 9416-9427
  • Bidon-Chanal, A., Martí, M.A., Estrín, D.A., Luque, F.J., (2009) Selforganization of Molecular Systems, , NATO science for peace and security series A: chemistry and biology. Springer, Netherlands, pp 33-47
  • Boechi, L., Martã, M.A., Milani, M., Bolognesi, M., Luque, F.J., Estrin, ; (2008) Proteins Struct Funct Genet., 73, pp. 372-379
  • Capece, L., Marti, M.A., Bidon-Chanal, A., Nadra, A., Luque, F.J., Estrin, D.A., (2008) Proteins Struct Funct Bioinform, 75, pp. 885-894
  • Nadra, A.D., Martã, M.A., Pesce, A., Bolognesi, M., Estrin, D.A., (2008) Proteins Struct Funct Genet., 71, pp. 695-705
  • Crespo, A., Scherlis, D.A., Marti, M.A., Ordejon, P., Roitberg, A.E., Estrin, D.A., (2003) J. Phys. Chem. B, 107, pp. 13728-13736
  • Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865
  • Capece, L., Marti, M.A., Crespo, A., Doctorovich, F., Estrin, D.A., (2006) J. Am. Chem. Soc., 128, pp. 12455-12461
  • Marti, M.A., Crespo, A., Bari, S.E., Doctorovich, F.A., Estrin, D.A., (2004) J. Phys. Chem. B, 108, pp. 18073-18080
  • Marti, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A., (2005) J. Am. Chem. Soc., 127, pp. 7721-7728
  • Crespo, A., Marti, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, D.A., (2005) J. Am. Chem. Soc., 127, pp. 4433-4444
  • Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., De Biase, P.M., Di Lella, S., Lebrero, M.C.G., Estrin, D.A., (2006) Phys. Chem. Chem. Phys., 8, pp. 5611-5628
  • Perissinotti, L.L., Marti, M.A., Doctorovich, F., Luque, F.J., Estrin, D.A., (2008) Biochemistry, 47, pp. 9793-9802
  • Crespo, A., Marti, M.A., Roitberg, A.E., Amzel, L.M., Estrin, D.A., (2006) J. Am. Chem. Soc., 128, pp. 12817-12828
  • Frisch, M.J., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Pople, J.A., (1998) Gaussian, 98. , Gaussian, Pittsburgh
  • Batabyal, D., Yeh, S.-R., (2009) J. Am. Chem. Soc., 131, pp. 3260-3270
  • Brantley Jr., R.E., Smerdon, S.J., Wilkinson, A.J., Singleton, E.W., Olson, J.S., (1993) J. Biol. Chem., 268, pp. 6995-7010
  • Samelson-Jones, B.J., Yeh, S.R., (2006) Biochemistry, 45, pp. 8527-8538
  • Meunier, B., De Visser, S.P., Shaik, S., (2004) Chem. Rev., 104, pp. 3947-3980
  • Bordwell, F.G., (1988) Acc Chem. Res., 21, pp. 456-463
  • (2001) Handbook of Chemistry and Physics, , Lide DR ed, 82nd edn. CRC Press, Boca Raton
  • Guallar, V., Harris, D.L., Batista, V.S., Miller, W.H., (2002) J. Am. Chem. Soc., 124, pp. 1430-1437
  • Saito, I., Matsuura, T., Nakagawa, M., Hino, T., (1977) Acc Chem. Res., 10, pp. 346-352
  • Thackray, S.J., Bruckmann, C., Anderson, J.L.R., Campbell, L.P., Xiao, R., Zhao, L., Mowat, C.G., Chapman, S.K., (2008) Biochemistry, 47, pp. 10677-10684
  • Chauhan, N., Basran, J., Efimov, I., Svistunenko, D.A., Seward, H.E., Moody, P.C.E., Raven, E.L., (2008) Biochemistry, 47, pp. 4761-4769
  • Martí, M.A., Bikiel, D.E., Crespo, A., Nardini, M., Bolognesi, M., Estrin, D.A., (2005) Proteins Struct Funct Bioinform, 62, pp. 641-648
  • Rovira, C., Fita, I., (2003) J. Phys. Chem. B, 107, pp. 5300-5305
  • Bathelt, C.M., Zurek, J., Mulholland, A.J., Harvey, J.N., (2005) J. Am. Chem. Soc., 127, pp. 12900-12908
  • Borowski, T., Blomberg, M.R., Siegbahn, P.E., (2008) Chemistry (Weinheim), 14, pp. 2264-2276
  • Kovaleva, E.G., Lipscomb, J.D., (2007) Science, 316, pp. 453-457

Citas:

---------- APA ----------
Capece, L., Lewis-Ballester, A., Batabyal, D., Di Russo, N., Yeh, S.-R., Estrin, D.A. & Marti, M.A. (2010) . The first step of the dioxygenation reaction carried out by tryptophan dioxygenase and indoleamine 2,3-dioxygenase as revealed by quantum mechanical/molecular mechanical studies. Journal of Biological Inorganic Chemistry, 15(6), 811-823.
http://dx.doi.org/10.1007/s00775-010-0646-x
---------- CHICAGO ----------
Capece, L., Lewis-Ballester, A., Batabyal, D., Di Russo, N., Yeh, S.-R., Estrin, D.A., et al. "The first step of the dioxygenation reaction carried out by tryptophan dioxygenase and indoleamine 2,3-dioxygenase as revealed by quantum mechanical/molecular mechanical studies" . Journal of Biological Inorganic Chemistry 15, no. 6 (2010) : 811-823.
http://dx.doi.org/10.1007/s00775-010-0646-x
---------- MLA ----------
Capece, L., Lewis-Ballester, A., Batabyal, D., Di Russo, N., Yeh, S.-R., Estrin, D.A., et al. "The first step of the dioxygenation reaction carried out by tryptophan dioxygenase and indoleamine 2,3-dioxygenase as revealed by quantum mechanical/molecular mechanical studies" . Journal of Biological Inorganic Chemistry, vol. 15, no. 6, 2010, pp. 811-823.
http://dx.doi.org/10.1007/s00775-010-0646-x
---------- VANCOUVER ----------
Capece, L., Lewis-Ballester, A., Batabyal, D., Di Russo, N., Yeh, S.-R., Estrin, D.A., et al. The first step of the dioxygenation reaction carried out by tryptophan dioxygenase and indoleamine 2,3-dioxygenase as revealed by quantum mechanical/molecular mechanical studies. J. Biol. Inorg. Chem. 2010;15(6):811-823.
http://dx.doi.org/10.1007/s00775-010-0646-x