Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nitric oxide synthases (NOS) are heme proteins that have a cysteine residue as axial ligand, which generates nitric oxide (NO). The proximal environment, specifically H-bonding between tryptophan (Trp) 178 and thiolate, has been proposed to play a fundamental role in the modulation of NOS activity. We analyzed the molecular basis of this modulation by performing electronic structure calculations on isolated model systems and hybrid quantum-classical computations of the active sites in the protein environment for wild-type and mutant (Trp 178 × Gly) proteins. Our results show that in the ferrous proteins NO exhibits a considerable trans effect. We also showed that in the ferrous (Fe +2 ) mutant NOS the absence of Trp, experimentally associated to a protonated cysteine, weakens the Fe-S bond and yields five coordinate complexes. In the ferric (Fe +3 ) state, the NO dissociation energy is shown to be slightly smaller in the mutant NOS, implying that the Fe +3 -NO complex has a shorter half-life. We found computational evidence suggesting that ferrous NOS is favored in wild-type NOS when compared to the Trp mutant, consistently with the fact that Trp mutants have been shown to accumulate less Fe +2 -NO dead end species. We also found that the heme macrocycle showed a significant distortion in the wild-type protein, due to the presence of the nearby Trp 178. This may also play a role in the subtle tuning of the electronic structure of the heme moiety. © SBIC 2005.

Registro:

Documento: Artículo
Título:Proximal effects in the modulation of nitric oxide synthase reactivity: A QM-MM study
Autor:Fernández, M.L.; Martí, M.A.; Crespo, A.; Estrin, D.A.
Filiación:Departamento de Química Inorgánica, Analítica Y Química Física, INQUIMAE-CONICET, Pabellón II, Buenos Aires, C1428EHA, Argentina
Palabras clave:Density functional theory; Heme proteins; Nitric oxide; NOS; QM-MM; cysteine; heme; iron; macrocyclic compound; nitric oxide; nitric oxide synthase; protein; sulfur; tryptophan; article; calculation; chemical bond; comparative study; electronics; enzyme activity; half life time; modulation; molecular biology; priority journal; quantum chemistry; structure analysis; Binding Sites; Computational Biology; Heme; Hemeproteins; Humans; Hydrogen Bonding; Iron; Models, Molecular; Nitric Oxide Synthase Type III; Tryptophan
Año:2005
Volumen:10
Número:6
Página de inicio:595
Página de fin:604
DOI: http://dx.doi.org/10.1007/s00775-005-0004-6
Título revista:Journal of Biological Inorganic Chemistry
Título revista abreviado:J. Biol. Inorg. Chem.
ISSN:09498257
CODEN:JJBCF
CAS:cysteine, 4371-52-2, 52-89-1, 52-90-4; heme, 14875-96-8; iron, 14093-02-8, 53858-86-9, 7439-89-6; nitric oxide synthase, 125978-95-2; nitric oxide, 10102-43-9; protein, 67254-75-5; sulfur, 13981-57-2, 7704-34-9; tryptophan, 6912-86-3, 73-22-3; Heme, 14875-96-8; Hemeproteins; Iron, 7439-89-6; Nitric Oxide Synthase Type III, EC 1.14.13.39; NOS3 protein, human, EC 1.14.13.39; Tryptophan, 73-22-3
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09498257_v10_n6_p595_Fernandez

Referencias:

  • Stuehr, D.J., (1999) Biochim Biophys Acta, 1411, pp. 2146-2152
  • Furchgott, R.F., Zawadzki, J.V., (1980) Nature, 288, pp. 373-376
  • Palmer, R.M.J., Ferrige, A.G., Moncada, S., (1987) Nature, 327, pp. 524-526
  • Alderton, W.K., Cooper, C.E., Knowles, R.G., (2001) Biochem J, 357, pp. 593-615. , and references therein
  • Marletta, M.A., (1993) J Biol Chem, 268, pp. 12231-12234
  • Loew, G.H., Harris, D.L., (2000) Chem Rev, 100, pp. 407-419
  • Woggon, W.D., Wagenknecht, H.A., Claude, C., (2001) J Inorg Biochem, 83, pp. 289-300
  • McMillan, K., Masters, B.S., (1995) Biochemistry, 34, pp. 3686-3693
  • Richards, M.K., Marletta, M.A., (1994) Biochemistry, 33, pp. 14723-14732
  • Ghosh, D.K., Stuehr, D.J., (1995) Biochemistry, 34, pp. 801-807
  • Adak, S., Crooks, C., Wang, Q., Crane, B.R., Trainer, J.A., Gertzoff, E.D., Stuehr, D.J., (1999) J Biol Chem, 274, pp. 26907-26911
  • Schelvis, J.P.M., Berka, V., Babcock, G.T., Tsai, A., (2002) Biochemistry, 41, pp. 5695-5701
  • Presta, A., Weber-Main, A.M., Stankovich, M.T., Stuehr, D.J., (1998) J Am Chem Soc, 120, pp. 9460-9465
  • Abu-Soud, H.M., Wang, J., Rousseau, D.L., Stuehr, D.J., (1999) Biochemistry, 38, pp. 12446-12451
  • Li, D., Stuehr, D.J., Yeh, S.R., Rousseau, D.L., (2004) J Biol Chem, 279, pp. 26489-26499
  • Santolini, J., Adak, S., Curran, C.M.L., Stuehr, D.J., (2001) J Biol Chem, 276, pp. 1233-1243
  • Stuehr, D.J., Santolini, J., Wang, Z.-Q., Wein, C.-C., Adak, S., (2004) J Biol Chem, 279, pp. 36167-36170
  • Scheele, J.S., Bruner, E., Kharitonov, V.G., Martasek, P., Roman, L.J., Masters, B.S.S., Sharma, V.S., Magde, D., (1999) J Biol Chem, 274, pp. 13105-13110
  • Santolini, J., Meade, A.L., Stuher, D.J., (2001) J Biol Chem, 276, pp. 48887-48898
  • Voegtle, H.L., Sono, M., Adak, S., Pond, A.E., Tomita, T., Perera, R., Goodin, D.B., Dawson, J.H., (2003) Biochemistry, 42, pp. 2475-2484
  • Adak, S., Wang, Q., Stuehr, D.J., (2000) J Biol Chem, 275, pp. 17434-17439
  • Couture, M., Adak, S., Stuehr, D.J., Rousseau, D.L., (2001) J Biol Chem, 276, pp. 38280-38288
  • Perera, R., Sono, M., Sigman, J.A., Pfister, T.D., Lu, Y., Dawson, J.H., (2003) Proc Natl Acad Sci, 100, pp. 3641-3646. , USA
  • Suzuki, N., Higuchi, T., Urano, Y., Kikuchi, K., Uekusa, H., Ohashi, Y., Uchida, T., Nagano, T., (1999) J Am Chem Soc, 121, pp. 11571-11572
  • Schöneboom, J.C., Cohen, S., Lin, H., Shaik, S., Thiel, W., (2004) J Am Chem Soc, 126, pp. 4017-4034
  • Lin, H., Schöneboom, J.C., Cohen, S., Shaik, S., Thiel, W., (2004) J Phys Chem B, 108, pp. 10083-10088
  • Schweitzer-Stenner, R., (1989) Q Rev Biophys, 22, pp. 381-490
  • Shelnutt, J.A., Song, X.-Z., Ma, J.-G., Jia, S.-L., Jentzen, W., Medforth, C., (1998) Chem Soc Rev, 27, pp. 31-41
  • Jentzen, W., Song, X.-Z., Shelnutt, J.A., (1997) J Phys Chem B, 101, pp. 1684-1699
  • Fischmann, T.O., Hruza, A., Xiao, D.N., Fossetta, J.D., Lunn, C.A., Dolphin, E., Prongay, A.J., Weber, P.C., (1999) Nat Struct Biol, 6, pp. 233-242
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., (1983) J Chem Phys, 79, pp. 926-935
  • Wang, J., Cieplak, P., Kollman, P.A., (2000) J Comput Chem, 21, pp. 1049-1074
  • Marti, M.A., Crespo, A., Bari, S.E., Doctorovich, F.A., Estrin, D.A., (2003) J Phys Chem B, 108, pp. 18073-18080
  • Crespo, A., Marti, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, D.A., (2005) J Am Chem Soc, 127, pp. 4433-4444
  • Soler, J.M., Artacho, E., Gale, J., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J Phys Cond Matt, 14, pp. 2745-2779
  • Martí, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejón, P., Estrin, D.A., (2003) J Bio Inorg Chem, 6, pp. 595-600
  • Scherlis, D.A., Martí, M.A., Ordejón, P., Estrin, D.A., (2002) Int J Quant Chem, 90, pp. 1505-1514
  • Troullier, N., Martins, J.L., (1991) Phys Rev B, 43, pp. 1993-2006
  • Louie, S.G., Froyen, S., Cohen, M.L., (1982) Phys Rev B, 26, pp. 1738-1742
  • Soler, J.M., Artacho, E., Gale, J., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J Phys Cond Mat, 14, pp. 2745-2779
  • Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys Rev Lett, 77, pp. 3865-3868
  • Martí, M.A., Crespo, A., Bari, S.E., Doctorovich, F.A., Estrin, D.A., (2004) J Phys Chem B, 108, pp. 18073-18080
  • Eichinger, M., Tavan, P., Hutter, J., Parrinello, M., (1999) J Chem Phys, 110, pp. 10452-10467
  • Rovira, C., Schultze, B., Eichinger, M., Evanseck, J.D., Parrinello, M., (2001) Biophys J, 81, pp. 435-445
  • Rovira, C., Kunc, K., Hutter, J., Ballone, P., Parrinello, M., (1997) J Phys Chem A, 101, pp. 8914-8925
  • Loew, G.H., Harris, D.L., (2000) Chem Rev, 100, pp. 407-419
  • Schöneboom, J.C., Thiel, W., (2004) J Phys Chem, 108, pp. 7468-7478
  • Enemark, J.H., Feltham, R.D., (1974) Coord Chem Rev, 13, pp. 339-406
  • Crespo, A., Scherlis, D.A., Martí, M.A., Ordejón, P., Roitberg, A.E., Estrin, D.A., (2003) J Phys Chem, 107, pp. 13728-13736
  • Jentzen, W., Simpson, M.C., Hobbs, J.D., Song, X., Ema, T., Nelson, N.Y., Medforth, C.J., Shelnutt, J.A., (1995) J Am Chem Soc, 117, pp. 11085-11097
  • Humphrey, W., Dalke, A., Schulten, K., (1996) J Molec Graphics, 14, pp. 33-38
  • Wyllie, G.R.A., Scheidt, W.R., (2002) Chem Rev, 102, pp. 1067-1089
  • Crane, B.R., Arvai, A.S., Ghosh, D.K., Wu, C., Getzoff, E.D., Stuhehr, D.J., Tainer, J.A., (1998) Science, 249, pp. 2121-2126
  • Crane, B.R., Rosenfeld, R.A., Arvai, A.S., Ghosh, D.K., Ghosh, S., Tainer, J.A., Stuhehr, D.J., Getzoff, E.D., (1999) EMBO J, 18, pp. 6271-6281
  • Hu, S., Kincaid, J.R., (1991) J Am Chem Soc, 113, pp. 2843-2850
  • Obayashi, E., Takahashi, S., Shiro, Y., (1998) J Am Chem Soc, 120, pp. 12964-12965

Citas:

---------- APA ----------
Fernández, M.L., Martí, M.A., Crespo, A. & Estrin, D.A. (2005) . Proximal effects in the modulation of nitric oxide synthase reactivity: A QM-MM study. Journal of Biological Inorganic Chemistry, 10(6), 595-604.
http://dx.doi.org/10.1007/s00775-005-0004-6
---------- CHICAGO ----------
Fernández, M.L., Martí, M.A., Crespo, A., Estrin, D.A. "Proximal effects in the modulation of nitric oxide synthase reactivity: A QM-MM study" . Journal of Biological Inorganic Chemistry 10, no. 6 (2005) : 595-604.
http://dx.doi.org/10.1007/s00775-005-0004-6
---------- MLA ----------
Fernández, M.L., Martí, M.A., Crespo, A., Estrin, D.A. "Proximal effects in the modulation of nitric oxide synthase reactivity: A QM-MM study" . Journal of Biological Inorganic Chemistry, vol. 10, no. 6, 2005, pp. 595-604.
http://dx.doi.org/10.1007/s00775-005-0004-6
---------- VANCOUVER ----------
Fernández, M.L., Martí, M.A., Crespo, A., Estrin, D.A. Proximal effects in the modulation of nitric oxide synthase reactivity: A QM-MM study. J. Biol. Inorg. Chem. 2005;10(6):595-604.
http://dx.doi.org/10.1007/s00775-005-0004-6