Artículo

Sun, W.; Thiramanas, R.; Slep, L.D.; Zeng, X.; Mailänder, V.; Wu, S. "Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?" (2017) Chemistry - A European Journal. 23(45):10832-10837
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Activation of anticancer therapeutics such as ruthenium (Ru) complexes is currently a topic of intense investigation. The success of phototherapy relies on photoactivation of therapeutics after the light passes through skin and tissue. In this paper, the photoactivation of anticancer Ru complexes with 671-nm red light through tissue of different thicknesses was studied. Four photoactivatable Ru complexes with different absorption wavelengths were synthesized. Two of them (Ru3 and Ru4) were responsive to wavelengths in the “therapeutic window” (650–900 nm) and could be activated using 671-nm red light after passing through tissue up to 16-mm-thick. The other two (Ru1 and Ru2) could not be activated using red light. Additionally, activated Ru4 caused inhibition of cancer cells. These results suggest that photoactivatable Ru complexes are promising for applications in deep-tissue phototherapy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Registro:

Documento: Artículo
Título:Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?
Autor:Sun, W.; Thiramanas, R.; Slep, L.D.; Zeng, X.; Mailänder, V.; Wu, S.
Filiación:Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
Center for Translational Nanomedicine, Dermatology Clinic, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
Departamento de Química Inorgánica, AnalíticayQuímica Física, Facultad de Ciencias ExactasyNaturales, and, INQUIMAE Universidad de Buenos Aires/ CONICET, Pabellón 2, 3er piso, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
Palabras clave:anticancer; metallodrug; photochemistry; phototherapy; ru complex; Photochemical reactions; Ruthenium; Ruthenium compounds; Synthesis (chemical); Absorption wavelengths; Anti-cancer therapeutics; Anticancer; Metallodrug; Photo activations; Photoactivatable; Phototherapy; Ru complexes; Tissue; antineoplastic agent; coordination compound; ruthenium; cell survival; chemistry; drug effects; HeLa cell line; human; infrared radiation; spectrophotometry; Antineoplastic Agents; Cell Survival; Coordination Complexes; HeLa Cells; Humans; Infrared Rays; Ruthenium; Spectrophotometry
Año:2017
Volumen:23
Número:45
Página de inicio:10832
Página de fin:10837
DOI: http://dx.doi.org/10.1002/chem.201701224
Título revista:Chemistry - A European Journal
Título revista abreviado:Chem. Eur. J.
ISSN:09476539
CODEN:CEUJE
CAS:ruthenium, 7440-18-8; Antineoplastic Agents; Coordination Complexes; Ruthenium
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09476539_v23_n45_p10832_Sun

Referencias:

  • Cheng, L., Wang, C., Feng, L., Yang, K., Liu, Z., (2014) Chem. Rev., 114, pp. 10869-10939
  • Alvarez-Lorenzo, C., Bromberg, L., Concheiro, A., (2009) Photochem. Photobiol., 85, pp. 848-860
  • Zhao, Y., (2007) Chem. Rec., 7, pp. 286-294
  • Rai, P., Mallidi, S., Zheng, X., Rahmanzadeh, R., Mir, Y., Elrington, S., Khurshid, A., Hasan, T., (2010) Adv. Drug Delivery Rev., 62, pp. 1094-1124
  • Hiltebrandt, K., Elies, K., D′Hooge, D.R., Blinco, J.P., Barner-Kowollik, C., (2016) J. Am. Chem. Soc., 138, pp. 7048-7054
  • Mueller, J.O., Schmidt, F.G., Blinco, J.P., Barner-Kowollik, C., (2015) Angew. Chem. Int. Ed., 54, pp. 10284-10288
  • (2015) Angew. Chem., 127, pp. 10423-10427
  • Bednarski, P.J., Mackay, F.S., Sadler, P.J., (2007) Anticancer Agents Med.Chem., 7, pp. 75-93
  • Mackay, F.S., Woods, J.A., Heringová, P., Kašpárková, J., Pizarro, A.M., Moggach, S.A., Parsons, S., Sadler, P.J., (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 20743-20748
  • Fan, W., Tong, X., Yan, Q., Fu, S., Zhao, Y., (2014) Chem. Commun., 50, pp. 13492-13494
  • Lin, Q., Bao, C., Cheng, S., Yang, Y., Ji, W., Zhu, L., (2012) J. Am. Chem. Soc., 134, pp. 5052-5055
  • Yu, G., Yu, W., Mao, Z., Gao, C., Huang, F., (2015) Small, 11, pp. 919-925
  • Wu, S., Butt, H.J., (2016) Adv. Mater., 28, pp. 1208-1226
  • Weissleder, R., Ntziachristos, V., (2003) Nat. Med., 9, pp. 123-128
  • Huang, H., Yu, B., Zhang, P., Huang, J., Chen, Y., Gasser, G., Ji, L., Chao, H., (2015) Angew. Chem. Int. Ed., 54, pp. 14049-14052
  • (2015) Angew. Chem., 127, pp. 14255-14258
  • Zhuang, X., Ma, X., Xue, X., Jiang, Q., Song, L., Dai, L., Zhang, C., Liang, X.J., (2016) ACS Nano, 10, pp. 3486-3495
  • Nikolenko, V., Yuste, R., Zayat, L., Baraldo, L.M., Etchenique, R., (2005) Chem. Commun., pp. 1752-1754
  • Araya, R., Andino-Pavlovsky, V., Yuste, R., Etchenique, R., (2013) ACS Chem. Neurosci., 4, pp. 1163-1167
  • Furuta, T., Wang, S.S.-H., Dantaker, J.L., Dore, T.M., Bybee, W.J., Callaway, E.M., Denk, W., Tsien, R.T., (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 1193-1200
  • Álvarez, M., Best, A., Pradhan-Kadam, S., Koynov, K., Jonas, U., Kreiter, M., (2008) Adv. Mater., 20, pp. 4563-4567
  • Dai, Y., Xiao, H., Liu, J., Yuan, Q., Ma, P., Yang, D., Li, C., Lin, J., (2013) J. Am. Chem. Soc., 135, pp. 18920-18929
  • Yan, B., Boyer, J.-C., Branda, N.R., Zhao, Y., (2011) J. Am. Chem. Soc., 133, pp. 19714-19717
  • Wang, F., Banerjee, D., Liu, Y., Chen, X., Liu, X., (2010) Analyst, 135, pp. 1839-1854
  • Ruggiero, E., Habtemariam, A., Yate, L., Mareque-Rivas, J.C., Salassa, L., (2014) Chem. Commun., 50, pp. 1715-1718
  • Chen, Z., Sun, W., Butt, H.J., Wu, S., (2015) Chem. Eur. J., 21, pp. 9165-9170
  • Anderson, E.D., Gorka, A.P., Schnermann, M.J., (2016) Nat. Commun., 7, p. 13378
  • Mari, C., Pierroz, V., Ferrari, S., Gasser, G., (2015) Chem. Sci., 6, pp. 2660-2686
  • Liu, K., Xing, R., Zou, Q., Ma, G., Mohwald, H., Yan, X., (2016) Angew. Chem. Int. Ed., 55, pp. 3036-3039
  • (2016) Angew. Chem., 128, pp. 3088-3091
  • Zhang, N., Zhao, F., Zou, Q., Li, Y., Ma, G., Yan, X., (2016) Small, 12, pp. 5936-5943
  • Lv, G., Guo, W., Zhang, W., Zhang, T., Li, S., Chen, S., Eltahan, A.S., Liang, X.J., (2016) ACS Nano, 10, pp. 9637-9645
  • Pinnick, D.V., Burham, B., (1984) Inorg. Chem., 23, pp. 1440-1445
  • Zayat, L., Calero, C., Alborés, P., Baraldo, L., Etchenique, R., (2003) J. Am. Chem. Soc., 125, pp. 882-883
  • Garner, R.N., Gallucci, J.C., Dunbar, K.R., Turro, C., (2011) Inorg. Chem., 50, pp. 9213-9215
  • Respondek, T., Garner, R.N., Herroon, M.K., Podgorski, I., Turro, C., Kodanko, J.J., (2011) J. Am. Chem. Soc., 133, pp. 17164-17167
  • Sun, W., Li, S., Haupler, B., Liu, J., Jin, S., Steffen, W., Schubert, U.S., Wu, S., (2017) Adv. Mater., 29, p. 1603702
  • Sun, W., Parowatkin, M., Steffen, W., Butt, H.J., Mailander, V., Wu, S., (2016) Adv. Healthcare Mater., 5, pp. 467-473
  • Wachter, E., Heidary, D.K., Howerton, B.S., Parkin, S., Glazer, E.C., (2012) Chem. Commun., 48, pp. 9649-9651
  • Kaspler, P., Lazic, S., Forward, S., Arenas, Y., Mandel, A., Lilge, L., (2016) Photochem. Photobiol. Sci., 15, pp. 481-495
  • Trondl, R., Heffeter, P., Kowol, C.R., Jakupec, M.A., Berger, W., Keppler, B.K., (2014) Chem. Sci., 5, pp. 2925-2932
  • Knoll, J.D., Turro, C., (2015) Coord. Chem. Rev., 282-283, pp. 110-126
  • White, J.K., Schmehl, R.H., Turro, C., (2017) Inorg. Chim. Acta, 454, pp. 7-20
  • Karaoun, N., Renfrew, A.K., (2015) Chem. Commun., 51, pp. 14038-14041
  • Sgambellone, M.A., David, A., Garner, R.N., Dunbar, K.R., Turro, C., (2013) J. Am. Chem. Soc., 135, pp. 11274-11282
  • Siewert, B., van Rixel, V.H., van Rooden, E.J., Hopkins, S.L., Moester, M.J., Ariese, F., Siegler, M.A., Bonnet, S., (2016) Chem. Eur. J., 22, pp. 10960-10968
  • Albani, B.A., Peña, B., Leed, N.A., de Paula, N.A., Pavani, C., Baptista, M.S., Dunbar, K.R., Turro, C., (2014) J. Am. Chem. Soc., 136, pp. 17095-17101
  • van Rixel, V.H.S., Siewert, B., Hopkins, S.L., Askes, S.H.C., Busemann, A., Siegler, M.A., Bonnet, S., (2016) Chem. Sci., 7, pp. 4922-4929
  • Filevich, O., Zayat, L., Baraldo, L.M., Etchenique, R., (2014) Luminiscent and Photoactive Transition Metla Complexes as Biomolecular Probes and Reagents, Structure and Bonding Vol. 165, pp. 47-68. , in, (Ed, K. K.-W. Lo, Springer International Publishing, Switzerland
  • Lameijer, L.N., Hopkins, S.L., Breve, T.G., Askes, S.H., Bonnet, S., (2016) Chem. Eur. J., 22, pp. 18484-18491
  • Zhang, P., Huang, H., Huang, J., Chen, H., Wang, J., Qiu, K., Zhao, D., Chao, H., (2015) ACS Appl. Mater. Interfaces, 7, pp. 23278-23290
  • Orlando, F.L., (2000), OrlandoFL.American National Standard for Safe Use of Lasers, Laser Institute of America: 2000; Can, A.A., Bölükbaşiateş, G., Solmaz, H., Kaya, Ö., Gülsoy, M., (2016) International Journal of Oncology and Cancer Therapy, 1, pp. 7-11
  • Liu, Y., Turner, D.B., Singh, T.N., Angeles-Boza, A.M., Chouai, A., Dunbar, K.R., Turro, C., (2009) J. Am. Chem. Soc., 131, pp. 26-27
  • Hecker, C.R., Fanwick, P.E., McMillin, D.R., (1991) Inorg. Chem., 30, pp. 659-666
  • Albani, B.A., Durr, C.B., Turro, C., (2013) J. Phys. Chem. A, 117, pp. 13885-13892
  • San Miguel, V., Álvarez, M., Filevich, O., Etchenique, R., del Campo, A., (2012) Langmuir, 28, pp. 1217-1221
  • Petroni, A., Slep, L.D., Etchenique, R., (2008) Inorg. Chem., 47, pp. 951-956
  • Marcolongo, J.P., Weyhermuller, T., Slep, L.D., (2015) Inorg. Chim. Acta, 429, pp. 174-182

Citas:

---------- APA ----------
Sun, W., Thiramanas, R., Slep, L.D., Zeng, X., Mailänder, V. & Wu, S. (2017) . Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?. Chemistry - A European Journal, 23(45), 10832-10837.
http://dx.doi.org/10.1002/chem.201701224
---------- CHICAGO ----------
Sun, W., Thiramanas, R., Slep, L.D., Zeng, X., Mailänder, V., Wu, S. "Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?" . Chemistry - A European Journal 23, no. 45 (2017) : 10832-10837.
http://dx.doi.org/10.1002/chem.201701224
---------- MLA ----------
Sun, W., Thiramanas, R., Slep, L.D., Zeng, X., Mailänder, V., Wu, S. "Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?" . Chemistry - A European Journal, vol. 23, no. 45, 2017, pp. 10832-10837.
http://dx.doi.org/10.1002/chem.201701224
---------- VANCOUVER ----------
Sun, W., Thiramanas, R., Slep, L.D., Zeng, X., Mailänder, V., Wu, S. Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?. Chem. Eur. J. 2017;23(45):10832-10837.
http://dx.doi.org/10.1002/chem.201701224