Artículo

Belov, V.N.; Mitronova, G.Y.; Bossi, M.L.; Boyarskiy, V.P.; Hebisch, E.; Geisler, C.; Kolmakov, K.; Wurm, C.A.; Willig, K.I.; Hell, S.W. "Masked Rhodamine Dyes of Five Principal Colors Revealed by Photolysis of a 2-Diazo-1-Indanone Caging Group: Synthesis, Photophysics, and Light Microscopy Applications" (2014) Chemistry - A European Journal. 20(41):13162-13173
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Caged rhodamine dyes (Rhodamines NN) of five basic colors were synthesized and used as "hidden" markers in subdiffractional and conventional light microscopy. These masked fluorophores with a 2-diazo-1-indanone group can be irreversibly photoactivated, either by irradiation with UV- or violet light (one-photon process), or by exposure to intense red light (λ750 nm; two-photon mode). All dyes possess a very small 2-diazoketone caging group incorporated into the 2-diazo-1-indanone residue with a quaternary carbon atom (C-3) and a spiro-9H-xanthene fragment. Initially they are non-colored (pale yellow), non-fluorescent, and absorb at λ=330-350 nm (molar extinction coefficient (ε)≈104 M-1 cm-1) with a band edge that extends to about λ=440 nm. The absorption and emission bands of the uncaged derivatives are tunable over a wide range (λ=511-633 and 525-653 nm, respectively). The unmasked dyes are highly colored and fluorescent (ε= 3-8×104 M-1 cm-1 and fluorescence quantum yields (φ)=40-85 % in the unbound state and in methanol). By stepwise and orthogonal protection of carboxylic and sulfonic acid groups a highly water-soluble caged red-emitting dye with two sulfonic acid residues was prepared. Rhodamines NN were decorated with amino-reactive N-hydroxysuccinimidyl ester groups, applied in aqueous buffers, easily conjugated with proteins, and readily photoactivated (uncaged) with λ=375-420 nm light or intense red light (λ=775 nm). Protein conjugates with optimal degrees of labeling (3-6) were prepared and uncaged with λ=405 nm light in aqueous buffer solutions (φ=20-38 %). The photochemical cleavage of the masking group generates only molecular nitrogen. Some 10-40 % of the non-fluorescent (dark) byproducts are also formed. However, they have low absorbance and do not quench the fluorescence of the uncaged dyes. Photoactivation of the individual molecules of Rhodamines NN (e.g., due to reversible or irreversible transition to a "dark" non-emitting state or photobleaching) provides multicolor images with subdiffractional optical resolution. The applicability of these novel caged fluorophores in super-resolution optical microscopy is exemplified. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Registro:

Documento: Artículo
Título:Masked Rhodamine Dyes of Five Principal Colors Revealed by Photolysis of a 2-Diazo-1-Indanone Caging Group: Synthesis, Photophysics, and Light Microscopy Applications
Autor:Belov, V.N.; Mitronova, G.Y.; Bossi, M.L.; Boyarskiy, V.P.; Hebisch, E.; Geisler, C.; Kolmakov, K.; Wurm, C.A.; Willig, K.I.; Hell, S.W.
Filiación:NanoBiophotonics Department, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
Laboratorio de Nanoscopías Fotonicas, INQUIMAE - DQIAyQF (FCEyN), Universidad de Buenos Aires and Conicet, Buenos Aires, Argentina
Chemistry Department, St. Petersburg State University, Universitetskiy Pr. 26, Petrodvorets, St.-Petersburg, 198504, Russian Federation
Palabras clave:bioconjugation; diazo compounds; fluorescence; photolysis; rhodamines; Byproducts; Carbon; Fluorophores; Optical microscopy; Photobleaching; Photolysis; Photons; Proteins; Quantum theory; Absorption and emissions; Aqueous buffer solution; Bio-conjugation; Diazo compounds; Fluorescence quantum yield; Irreversible transition; Molar extinction coefficient; rhodamines; Fluorescence
Año:2014
Volumen:20
Número:41
Página de inicio:13162
Página de fin:13173
DOI: http://dx.doi.org/10.1002/chem.201403316
Título revista:Chemistry - A European Journal
Título revista abreviado:Chem. Eur. J.
ISSN:09476539
CODEN:CEUJE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09476539_v20_n41_p13162_Belov

Referencias:

  • Klán, P., Šolomek, T., Bochet, C.G., Blanc, A., Givens, R., Rubina, M., Popik, V., Wirz, J., (2013) Chem. Rev., 113, pp. 119-191
  • Belov, V.N., Bossi, M.L., (2013) Isr. J. Chem., 53, pp. 267-279
  • Peters, R., (2013) Fluorescence Photobleaching and Photoactivation Techniques in Fluorescence Microscopy: From Principles to Biological Applications, pp. 215-244. , Wiley-VCH, Weinheim
  • Raymo, F.M., (2013) Phys. Chem. Chem. Phys, 15, pp. 14840-14850
  • Raymo, F.M., (2012) J. Phys. Chem. Lett., 3, pp. 2379-2385
  • Sauer, M., (2013) J. Cell Sci., 126, pp. 3505-3513
  • Fürstenberg, A., Heilemann, M., (2013) Phys. Chem. Chem. Phys, 15, pp. 14919-14930
  • Finan, K., Flottmann, B., Heilemann, M., (2013) Meth. Mol. Biol., 950, pp. 131-151
  • Grimm, J.B., Heckman, L.M., Lavis, L.D., (2013) Progr. Mol. Biol. Transl. Science, 113, pp. 1-34
  • Li, W.-H., Zheng, G., (2012) Photochem. Photobiol. Sci., 11, pp. 460-471. , for very recent reports, see
  • Grimm, J.B., Sung, A.J., Legant, W.R., Hulamm, P., Matlosz, S.M., Betzig, E., Lavis, L.D., (2013) ACS Chem. Biol., 8, pp. 1303-1310
  • Ragab, S.S., Swaminathan, S., Baker, J.D., Raymo, F.M., (2013) PhysChemChemPhys, 15, pp. 14851-14855
  • Aotake, T., Tanimoto, H., Hotta, H., Kuzuhara, D., Okujima, T., Uno, H., Yamada, H., (2013) Chem. Commun., 49, pp. 3661-3663
  • Belov, V.N., Wurm, C.A., Boyarskiy, V.P., Jakobs, S., Hell, S.W., (2010) Angew. Chem., 122, pp. 3598-3602
  • (2010) Angew. Chem. Int. Ed., 49, pp. 3520-3523
  • Kolmakov, K., Wurm, C.A., Sednev, M.V., Bossi, M.L., Belov, V.N., Hell, S.W., (2012) Photochem. Photobiol. Sci., 11, pp. 522-532. , Formation of an acid chloride is the most important step in conversion of rhodamines and carbopyronines to spiro diazoketones. Before the reaction with diazomethane, a small sample of an acid chloride must be quenched by addition of alcohol (after removal of the activating agent), followed by analysis of the reaction mixture by TLC, HPLC, or ESI-MS. This is most important in the case of oxalyl chloride, which often gives incomplete conversions. Oxalyl chloride is a mild activating agent and is indispensible in some cases. Its reaction may require catalysis with DMF
  • Mitchison, T.J., Sawin, K.E., Theriot, J.A., Gee, K., Mallavarapu, A., (1998) Methods Enzymol., 291, pp. 63-78
  • Gee, K.R., Weinberg, E.S., Kozlowski, D.J., (2001) Bioorg. Med. Chem. Lett., 11, pp. 2181-2183
  • Ottl, J., Gabriel, D., Marriott, G., (1998) Bioconjugate Chem., 9, pp. 143-151
  • Šolomek, T., Mercier, S., Bally, T., Bochet, C.G., (2012) Photochem. Photobiol. Sci., 11, pp. 548-555
  • Russell, A.G., Sadler, M.J., Laidlaw, H.J., Gutiérrez-Loriente, A., Wharton, C.W., Carteau, D., Bassani, D.M., Snaith, J.S., (2012) Photochem. Photobiol. Sci., 11, pp. 556-563
  • Wysocki, L.M., Grimm, J.B., Tkachuk, A.N., Brown, T.A., Betzig, E., Lavis, L.D., (2011) Angew. Chem., 123, pp. 11402-11405
  • (2011) Angew. Chem. Int. Ed., 50, pp. 11206-11209
  • Lavis, L.D., Chao, T.-Y., Raines, R.T., (2006) ACS Chem. Biol., 1, pp. 252-260
  • Givens, R.S., Rubina, M., Wirz, J., (2012) Photochem. Photobiol. Sci., 11, pp. 472-488
  • Banerjee, A., Grewer, C., Ramakrishnan, L., Jäger, J., Gameiro, A., Breitinger, H.-G.A., Gee, K.R., Hess, G.P., (2003) J. Org. Chem., 68, pp. 8361-8367. , cf
  • Matsuzaki, M., Ellis-Davies, G.C.R., Nemoto, T., Miyashita, Y., Iino, M., Kasai, H., (2001) Nat. Neurosci., 4, pp. 1086-1092
  • Stegmaier, P., Alonso, J.M., Del Campo, A., (2008) Langmuir, 24, pp. 11872-11879
  • Fedoryak, O.D., Dore, T.M., (2002) Org. Lett., 4, pp. 3419-3422
  • Furuta, T., Wang, S.S.-H., Dantzker, J.L., Dore, T.M., Bybee, W.J., Callaway, E.M., Denk, W., Tsien, R.Y., (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 1193-2000
  • Ando, H., Furuta, T., Tsien, R.Y., Okamoto, H., (2001) Nat. Genet., 28, pp. 317-325
  • Lin, W., Lawrence, D.S., (2002) J. Org. Chem., 67, pp. 2723-2726
  • Montgomery, H.J., Perdicakis, B., Fishlock, D., Lajoie, G.A., Jervis, E., Guillemette, J.G., (2002) Bioorg. Med. Chem., 10, pp. 1919-1927
  • Li, W.-H., Zhao, Y.R., (2007), US; Zhao, Y.R., Zheng, Q., Dakin, K., Xu, K., Martinez, M.L., Li, W.-H., (2004) J. Am. Chem. Soc., 126, pp. 4653-4663
  • Haugland, R.P., Gee, K.R., (1997), US; Kobayashi, T., Urano, Y., Kamiya, M., Ueno, T., Kojima, H., Nagano, T., (2007) J. Am. Chem. Soc., 129, pp. 6696-6697
  • Krafft, G.A., Sutton, W.R., Cummings, R.T., (1988) J. Am. Chem. Soc., 110, pp. 301-303
  • Majjigapu, J.R.R., Kurchan, A.N., Kottani, R., Gustafson, T.P., Kutateladze, A.G., (2005) J. Am. Chem. Soc., 127, pp. 12458-12459. , Synthesis and properties of caged fluorescent 2-amidothioxanthones (compounds structurally similar to fluorescein or rhodamines) were also reported
  • Sednev, M.V., Wurm, C.A., Belov, V.N., Hell, S.W., (2013) Bioconjugate Chem., 24, pp. 690-700
  • For reviews on rhodamines and other fluorescent dyes, see; Gonçalves, M.S.T., (2009) Chem. Rev., 109, pp. 190-212
  • Lippincott-Schwartz, J., Snapp, E., Kenworthy, A., (2001) Nat. Rev. Mol. Cell Biol., 2, pp. 444-456
  • Lidke, D.S., Wilson, B.S., (2009) Trends Cell Biol., 19, pp. 566-574
  • Sauer, M., Hofkens, J., Enderlein, J., (2011) Handbook of Fluorescence Spectroscopy and Imaging, p. 282. , Wiley-VCH, Weinheim
  • Fernández-Suárez, M., Ting, A.Y., (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 929-943
  • Patterson, G., Davidson, M., Manley, S., Lippincott-Schwartz, J., (2010) Annu. Rev. Phys. Chem., 61, pp. 345-367
  • Petchprayoon, C., Yan, Y., Mao, S., Marriott, G., (2011) Bioorg. Med. Chem., 19, pp. 1030-1040
  • Sibrian-Vazquez, M., Escobedo, J.O., Lowry, M., Fronczek, F.R., Strongin, R.M., (2012) J. Am. Chem. Soc., 134, pp. 10502-10508
  • Kim, E., Pak, S.B., (2010) Discovery of New Fluorescent Dyes: Targeted Synthesis or Combinatorial Approach in Advanced Fluorescence Reporters in Chemistry and Biology I: Fundamentals and Molecular Design, , (Ed.: A. P. Demchenko), Springer, Berlin-Heidelberg
  • (2010) A Guide to Fluorescent Probes and Labeling Technologies, , 11ed th ed Invitrogen, Carlsbad, for recent reports on green- and red-emitting rhodamines and carbopyronines, see
  • Boyarskiy, V.P., Belov, V.N., Medda, R., Hein, B., Bossi, M., Hell, S.W., (2008) Chem. Eur. J., 14, pp. 1784-1792
  • Mitronova, G.Y., Belov, V.N., Bossi, M.L., Wurm, C.A., Meyer, L., Medda, R., Moneron, G., Hell, S.W., (2010) Chem. Eur. J., 16, pp. 4477-4488
  • Kolmakov, K., Wurm, C.A., Hennig, R., Rapp, E., Jakobs, S., Belov, V.N., Hell, S.W., (2012) Chem. Eur. J., 18, pp. 12986-12998
  • Wurm, C.A., (2012) Optical Nanoscopy, , 1:7
  • Kolmakov, K., Belov, V.N., Bierwagen, J., Ringemann, C., Müller, V., Eggeling, C., Hell, S.W., (2010) Chem. Eur. J., 16, pp. 158-166
  • Kolmakov, K., Belov, V.N., Wurm, C.A., Harke, B., Leutenegger, M., Eggeling, C., Hell, S.W., (2010) Eur. J. Org. Chem., pp. 3593-3610
  • Lord, S.J., Lee, H.D., Samuel, R., Weber, R., Liu, N., Conley, N.R., Thompson, M.A., Moerner, W.E., (2010) J. Phys. Chem. B, 114, pp. 14157-14167. , For phototransformation of photoactivatable azido fluorogens, which represent a special class of masked fluorescent dyes, to fluorescent ("push-pull") aromatic amines, see
  • Kolmakov, K., Wurm, C.A., Meineke, D.N.H., Göttfert, F., Boyarskiy, V.P., Belov, V.N., Hell, S.W., (2014) Chem. Eur. J., 20, pp. 146-157
  • Mao, F., Leung, W.-Y., Haugland, R.P., (2000), Provided that these dyes (e.g., Alexa Fluor 546 or Alexa Fluor 633) were also prepared by the SNAr of one chlorine or fluorine atom in precursors with tetrachloro- or trifluoro-phenyl rings, respectively; for an example, see:, US; Belov, V.N., Bossi, M.L., Fölling, J., Boyarskiy, V.P., Hell, S.W., (2009) Chem. Eur. J., 15, pp. 10762-10776
  • For the structures of Alexa Fluor 594 diastereomers, see; Romieu, A., Brossard, D., Hamon, M., Outaabout, H., Portal, C., Renard, P.-Y., (2008) Bioconjugate Chem., 19, pp. 279-289. , for the preparation of this dye, see ref. [15] (compound 7)
  • Nizamov, S., Willig, K.I., Sednev, M.V., Belov, V.N., Hell, S.W., (2012) Chem. Eur. J., 18, pp. 16339-16348
  • Details of preparation, properties, and the use of the "universal hydrophlilizer" 11 will be reported later; Methanol was used as a solvent for the model compounds in the preparative photolysis experiments, from which the fluorescent homologues (3 a -Y,Me- 3 e -Y,Me) of the parent Rhodamines NN and the non-emitting ("dark") products (4 a -Y- 4 e -Y) were isolated (see Scheme 1 and the Supporting Information for details); Gauglitz, G., (1976) J. Photochem., 5, pp. 41-47
  • Gauglitz, G., Hubig, S., (1985) J. Photochem., 30, pp. 121-125
  • Kuhn, H.J., Braslavsky, S.E., Schmidt, R., (2004) Pure Appl. Chem., 76, pp. 2105-2146
  • Compare with the values for the photactivation (uncaging) quantum yields reported in references [4a], [5], [6], [8b], [9a], [13], and in the following publications; Lin, W., Long, L., Tan, W., Chen, B., Yuan, L., (2010) Chem. Eur. J., 16, pp. 3914-3917
  • Hagen, V., Bendig, J., Frings, S., Eckardt, T., Helm, S., Reuter, D., Kaupp, U.B., (2001) Angew. Chem., 113, pp. 1077-1080
  • (2001) Angew. Chem. Int. Ed., 40, pp. 1045-1048
  • Del Mármol, J., Filevich, O., Etchenique, R., (2010) Anal. Chem., 82, pp. 6259-6264
  • Urdabayev, N.K., Popik, V.V., (2004) J. Am. Chem. Soc., 126, pp. 4058-4059
  • http://www.abberior.com/fileadmin/user_upload/documents/Downloads/Application_Notes/20120316-Labeling_Protocol.pdf, For labeling protocols, see, for example; https://www.atto-tec.com/fileadmin/user_upload/Katalog_Flyer_Support/Procedures.pdf, In the case of the lipophilic NHS esters derived from the caged dyes 2 a, 2 bc, 2 c, and KK1012, amino-reactive dye (0.2 mg) dissolved in dry DMF (40 μL) was added slowly to the stirred and buffered (pH≈8.5) protein solution (1 mg of a secondary antibody in 1 mL buffer), followed by incubation and common isolation procedures (gel-filtration, evaluation of protein concentrations, etc.). More hydrophilic caged dyes 2 d,Na and 10 require less DMF; https://www.atto-tec.com, value provided by the producer; Karstens, T., Kobs, K., (1980) J. Phys. Chem., 84, pp. 1871-1872
  • Fölling, J., Bossi, M.L., Bock, H., Medda, R., Wurm, C.A., Hein, B., Jakobs, S., Hell, S.W., (2008) Nat. Methods, 5, pp. 943-945
  • For further examples, see; Eggert, D., Naumann, M., Reimer, R., Voigt, C.A., (2014) Sci. Rep., 4. , 4159
  • microscopic images obtained with Abberior Cage dyes (500, 532, 552, 590, 635): www.abberior.com; (2014) Springer Protocols., pp. 354-356. , for spectral properties of the (uncaged) dyes that can be used in STED microscopy, see: (Eds.: E. F. Fornasiero, S. Rizzoli), Superresolution Microsopy Techniques in Neurosciences, Humana Press, New York,
  • Westphal, V., Lauterbach, M.A., Dinicola, A., Hell, S.W., (2007) New J. Phys., 9, pp. 435-445
  • Gronemeyer, T., Godin, G., Johnsson, K., (2005) Curr. Opin. Biotechnol., 16, pp. 453-458
  • For reviews, see; Hell, S.W., (2009) Far-Field Optical Nanoscopy; In: Single Molecule Spectroscopy in Chemistry, Physics and Biology, pp. 365-398. , (Eds.: A. Gräslund, R. Rigler, J. Widengren), Springer, Berlin
  • Hell, S.W., (2007) Science, 316, pp. 1153-1158
  • Evanko, D., (2009) Nat. Methods, 6, pp. 19-20
  • Hell, S.W., (2009) Nat. Methods, 6, pp. 24-32
  • Zhuang, X., (2009) Nat. Photonics, 3, pp. 365-367
  • Lippincott-Schwartz, J., Manley, S., (2009) Nat. Methods, 6, pp. 21-23
  • Huang, B., Bates, M., Zhuang, X., (2009) Annu. Rev. Biochem., 78, pp. 993-1016
  • Huang, B., Babcock, H., Zhuang, X., (2010) Cell, 143, pp. 1047-1058
  • Kamiyama, D., Huang, B., (2012) Developmental Cell, 23, pp. 1103-1110

Citas:

---------- APA ----------
Belov, V.N., Mitronova, G.Y., Bossi, M.L., Boyarskiy, V.P., Hebisch, E., Geisler, C., Kolmakov, K.,..., Hell, S.W. (2014) . Masked Rhodamine Dyes of Five Principal Colors Revealed by Photolysis of a 2-Diazo-1-Indanone Caging Group: Synthesis, Photophysics, and Light Microscopy Applications. Chemistry - A European Journal, 20(41), 13162-13173.
http://dx.doi.org/10.1002/chem.201403316
---------- CHICAGO ----------
Belov, V.N., Mitronova, G.Y., Bossi, M.L., Boyarskiy, V.P., Hebisch, E., Geisler, C., et al. "Masked Rhodamine Dyes of Five Principal Colors Revealed by Photolysis of a 2-Diazo-1-Indanone Caging Group: Synthesis, Photophysics, and Light Microscopy Applications" . Chemistry - A European Journal 20, no. 41 (2014) : 13162-13173.
http://dx.doi.org/10.1002/chem.201403316
---------- MLA ----------
Belov, V.N., Mitronova, G.Y., Bossi, M.L., Boyarskiy, V.P., Hebisch, E., Geisler, C., et al. "Masked Rhodamine Dyes of Five Principal Colors Revealed by Photolysis of a 2-Diazo-1-Indanone Caging Group: Synthesis, Photophysics, and Light Microscopy Applications" . Chemistry - A European Journal, vol. 20, no. 41, 2014, pp. 13162-13173.
http://dx.doi.org/10.1002/chem.201403316
---------- VANCOUVER ----------
Belov, V.N., Mitronova, G.Y., Bossi, M.L., Boyarskiy, V.P., Hebisch, E., Geisler, C., et al. Masked Rhodamine Dyes of Five Principal Colors Revealed by Photolysis of a 2-Diazo-1-Indanone Caging Group: Synthesis, Photophysics, and Light Microscopy Applications. Chem. Eur. J. 2014;20(41):13162-13173.
http://dx.doi.org/10.1002/chem.201403316