Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The nitroprusside ion [Fe(CN)5NO]2- (NP) reacts with excess HS- in the pH range 8.5-12.5, in anaerobic medium ("Gmelin" reaction). The progress of the addition process of HS - into the bound NO+ ligand was monitored by stopped-flow UV/Vis/EPR and FTIR spectroscopy, mass spectrometry, and chemical analysis. Theoretical calculations were employed for the characterization of the initial adducts and reaction intermediates. The shapes of the absorbance-time curves at 535-575 nm depend on the pH and concentration ratio of the reactants, R=[HS -]/[NP]. The initial adduct [Fe(CN)5N(O)SH]3- (AH, Î max≈570 nm) forms in the course of a reversible process, with kad=190±20 M-1 s-1, k -ad=0.3±0.05 s-1. Deprotonation of AH (pK a=10.5±0.1, at 25.0 °C, I=1 M), leads to [Fe(CN) 5N(O)S]4- (A, Î max=535 nm, ε=6000±300 M-1 cm-1). [Fe(CN) 5NO].3- and HS2. 2- radicals form through the spontaneous decomposition of AH and A. The minor formation of the [Fe(CN)5NO]3- ion equilibrates with [Fe(CN)4NO]2- through cyanide labilization, and generates the "g=2.03" iron-dinitrosyl, [Fe(NO)2(SH) 2]-, which is labile toward NO release. Alternative nucleophilic attack of HS- on AH and A generates the reactive intermediates [Fe(CN)5N(OH)(SH)2]3- and [Fe(CN)5N(OH)(S)(SH)]4-, respectively, which decompose through multielectronic nitrosyl reductions, leading to NH3 and hydrogen disulfide, HS2-. N2O is also produced at pH≥11. Biological relevance relates to the role of NO, NO-, and other bound intermediates, eventually able to be released to the medium and rapidly trapped by substrates. Structure and reactivity comparisons of the new nitrososulfide ligands with free and bound nitrosothiolates are provided. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Registro:

Documento: Artículo
Título:Addition and redox reactivity of hydrogen sulfides (H2S/HS -) with nitroprusside: New chemistry of nitrososulfide ligands
Autor:Quiroga, S.L.; Almaraz, A.E.; Amorebieta, V.T.; Perissinotti, L.L.; Olabe, J.A.
Filiación:Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de Mar Del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/INQUIMAE/CONICET, Pabellõn 2, C1428EHA Buenos Aires, Argentina
Palabras clave:addition reaction; iron; N ligands; nitrososulfide ligands; nitrosyl; sulfur; Absorbance-time curves; Concentration ratio; FTIR spectroscopy; N ligands; nitrososulfide ligands; nitrosyl; NO release; Nucleophilic attack; pH range; Reactive intermediate; Redox reactivity; Reversible process; Stopped flow; Theoretical calculations; Addition reactions; Chemical analysis; Cyanides; Fourier transform infrared spectroscopy; Hydraulic structures; Hydrogen; Mass spectrometry; pH; Reaction intermediates; Reaction kinetics; Sulfur; Ligands; ferrous ion; hydrogen sulfide; ligand; nitrogen oxide; nitroprusside sodium; article; chemical structure; chemistry; kinetics; oxidation reduction reaction; pH; stereoisomerism; ultraviolet spectrophotometry; Ferrous Compounds; Hydrogen Sulfide; Hydrogen-Ion Concentration; Kinetics; Ligands; Molecular Structure; Nitrogen Oxides; Nitroprusside; Oxidation-Reduction; Spectrophotometry, Ultraviolet; Stereoisomerism
Año:2011
Volumen:17
Número:15
Página de inicio:4145
Página de fin:4156
DOI: http://dx.doi.org/10.1002/chem.201002322
Título revista:Chemistry - A European Journal
Título revista abreviado:Chem. Eur. J.
ISSN:09476539
CODEN:CEUJE
CAS:ferrous ion, 15438-31-0; hydrogen sulfide, 15035-72-0, 7783-06-4; nitrogen oxide, 11104-93-1; nitroprusside sodium, 14402-89-2, 15078-28-1; Ferrous Compounds; Hydrogen Sulfide, 7783-06-4; Ligands; Nitrogen Oxides; Nitroprusside, 15078-28-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09476539_v17_n15_p4145_Quiroga

Referencias:

  • (2000) Nitric Oxide: Biology and Pathobiology, , (Ed.: L. J. Ignarro), Academic Press, San Diego
  • (1996) Methods in Nitric Oxide Research, , (Eds.: M. Feelisch, J. S. Stamler), Wiley, New York
  • McCleverty, J.A., (2004) Chem. Rev., 104, p. 403
  • Ryter, S.W., Otterbein, L.E., (2004) BioEssays, 26, p. 270
  • Wu, L., Wang, R., (2005) Pharmacol. Rev., 57, p. 585
  • Ryter, S.W., Alam, J., Choi, A.M., (2006) Physiol. Rev., 86, p. 583
  • Abe, K., Kimura, H., (1996) J. Neurosci., 16, p. 1066
  • Furne, J., Saeed, A., Levitt, M.D., (2008) Am. J. Physiol., 295, p. 1479. , R
  • Olson, K.R., Dombrowski, R.A., Russell, M.J., Doellman, M.M., Head, A.K., Whitfield, N.L., Madden, J.A., (2006) J. Exp. Biol., 209, p. 4011
  • Hosoki, R., Matsuki, N., Kimura, H., (1997) Biochem. Biophys. Res. Commun., 237, p. 527
  • Li, L., Moore, P.K., (2008) Trends in Pharmacological Sciences, 29, p. 84
  • Yang, G., Wu, L., Jiang, B., Yang, W., Qi, J., Cao, K., Meng, Q., Wang, R., (2008) Science, 322, p. 587
  • Eto, K., Kimura, H., (2002) J. Neurochem., 83, p. 80
  • Nicholls, P., Kim, J.K., (1981) Biochim. Biophys. Acta, 637, p. 312
  • Bailly, X., Vinogradov, S.J., (2005) J. Inorg. Biochem., 99, p. 142
  • Weber, R.E., Vinogradov, S.N., (2001) Physiol. Rev., 81, p. 569
  • Kuehn, C.K., Isied, S.S., (1980) Prog. Inorg. Chem., 27, p. 153
  • Deutsch, E., Root, M.J., Nosco, D.L., (1983) Adv. Inorg. Bioinorg. Mech., p. 269
  • Pavlik, J.W., Noll, B.C., Oliver, A.G., Schulz, C.E., Scheidt, W.R., (2010) Inorg. Chem., 49, p. 1017
  • Playfair, L., (1850) Annalen, 74, p. 317
  • Sidgwick, N.V., (1950) The Chemical Elements and Their Compounds, Vol. II, p. 1315. , Oxford University Press, London, p
  • Rock, P.A., Swinehart, J.H., (1966) Inorg. Chem., 5, p. 1078
  • Kuban, V., Dasgupta, P.K., Marx, J.N., (1992) Anal. Chem., 64, p. 36
  • Butler, A.R., Calsy-Harrison, A.M., Glidewell, C., (1988) Polyhedron, 7, p. 1197
  • Bottomley, F., (1989) Reactions of Coordinated Ligands, Vol. 2, , in (Ed.: P. S. Braterman), Plenum, New York
  • Olabe, J.A., (2008) Dalton Trans., p. 3633
  • Roncaroli, F., Videla, M., Slep, L.D., Olabe, J.A., (2007) Coord. Chem. Rev., 251, p. 1903
  • Olabe, J.A., (2004) Adv. Inorg. Chem., 55, p. 61
  • Szacilowski, K., Chmura, A., Stasicka, Z., (2005) Coord. Chem. Rev., 249, p. 2408
  • Stamler, J.S., Toone, E.J., (2002) Curr. Opin. Chem. Biol., 6, p. 779
  • Szacilowski, K., Stasicka, Z., (2001) Prog. React. Kinet. Mech., 26. , l
  • Williams, D.L.H., (1999) Acc. Chem. Res., 32, p. 869
  • Tchir, P.O., Spratley, R.D., (1975) Can. J. Chem., 53, p. 2318
  • Nonella, M., Huber, J.R., Tae-Kyu, H., (1987) J. Phys. Chem., 91, p. 5203
  • Lai, C.H., Li, E.Y., Chou, P.T., (2007) Theor. Chem. Acc., 117, p. 145
  • Bharatam, P.V., Amita, Kumar, P.S., (2006) Int. J. Quantum Chem., 106, p. 1237
  • Bharatam, P.V., Amita, (2002) Tetrahedron Lett., 43, p. 8289
  • Butler, A.R., Megson, I.L., (2002) Chem. Rev., 102, p. 1155
  • Zhao, Y., Brandish, P.E., Ballou, D.P., Marletta, M.A., (1999) Proc. Natl. Acad. Sci. USA, 96, p. 14753
  • Niehs Spin Trap Database, , http://tools.niesh.nih.gov/stdb/index.cfm
  • Gutiérrez, M.M., Amorebieta, V.T., Estiú, G.L., Olabe, J.A., (2002) J. Am. Chem. Soc., 124, p. 10307
  • Alluisetti, G., Almaraz, A.E., Amorebieta, V.T., Doctorovich, F., Olabe, J.A., (2004) J. Am. Chem. Soc., 126, p. 13432
  • Koroleff, F., (1976) Methods of Seawater Analysis, p. 126. , in (Ed.: K. Grasshoft), VCH, Weinheim, p
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. Stratmann, J. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98, Rev. A7, Gaussian, Inc., Pittsburgh PA 1998; Perdew, J.P., Burke, K., Ernzenof, M., (1996) Phys. Rev. Lett., 77, p. 3865
  • Cossi, M., Barone, V., Cammi, R., Tomasi, J., (1996) Chem. Phys. Lett., 255, p. 327
  • Maseras, F., Morokuma, K., (1995) J. Comput. Chem., 16, p. 1170
  • Humbel, S., Sieber, S., Morokuma, K., (1996) J. Chem. Phys., 105, p. 1959
  • Svensson, M., Humbel, S., Froese, R.D., Matsubara, T., Sieber, S., Morokuma, K., (1996) J. Phys. Chem., 100, p. 19357
  • Vreven, T., Morokuma, K., (2000) J. Comput. Chem., 21, p. 1419
  • Rappe, A.K., Casewit, C.J., Colwell, K.S., Iii, W.A.G., Skiff, W.M., (1992) J. Am. Chem. Soc., 114, p. 10024
  • Bauernschmitt, R., Ahlrichs, R., (1996) Chem. Phys. Lett., 256, p. 454
  • Stratmann, R.E., Scuseria, G.E., Frisch, M.J., (1998) J. Chem. Phys., 109, p. 8218
  • Scalmani, G., Frisch, M.J., Mennucci, B., Tomasi, J., Cammi, R., Barone, V., (2006) J. Chem. Phys., 124, p. 094107
  • Foresman, J.B., Head-Gordon, M., Pople, J.A., Frisch, M.J., (1992) J. Phys. Chem., 96, p. 135
  • Zerner, M.C., Lowe, G.H., Kirchner, R.F., Mueller-Westerhoff, U.T., (1980) J. Am. Chem. Soc., 102, p. 589
  • Tawa, G.J., Topol, I.A., Burt, S.K., Caldwell, R.A., Rasin, A.A., (1998) J. Chem. Phys., 109, p. 4852. , The Sackur-Tetrode equation can be found in
  • McQuarrie, D.A., (1970) Statistical Mechanics, , Harper and Row, New York
  • Kelly, C.P., Cramer, C.J., Truhlar, D.G., (2006) J. Phys. Chem. A, 110, p. 2493
  • Tissandier, M.D., Cowen, K.A., Feng, W.Y., Gundlach, E., Cohen, M.H., Earhart, A.D., Coe, J.V., Tuttle, T.R., (1998) J. Phys. Chem. A, 102, p. 7787
  • Reed, A.E., Weinstock, R.B., Weinhold, F., (1985) J. Chem. Phys., 83, p. 735
  • Reed, A.E., Curtiss, L.A., Weinhold, F., (1988) Chem. Rev., 88, p. 899
  • Humphrey, W., Dalke, A., Schulten, K., (1996) J. Molec. Graphics, 14, p. 33
  • http://www.povray.org/download/, Persistence of Vision Pty. Ltd. 2004, Persistence of Vision Raytracer (Version 3.6) [computer software]; retrieved from; (2003) CRC Handbook of Chemistry and Physics, , 84 th ed. (Ed.: D. R. Lide), CRC Press
  • Su, Y.S., Cheng, K.L., Jean, Y.C., (1997) Talanta, 44, p. 1757. , a new value of pKa=12.0 is reported for HS-, and the previous ones in the range 17-19 have been criticized
  • Meyer, B., Ward, K., Koshlap, K., Peter, L., (1983) Inorg. Chem., 22, p. 2345. , a pKa of 17±1 has been proposed on the basis of previous UV and new Raman spectroscopic measurements
  • The first spectra of Figures 5 and 6 show a similar dependence on the pH for the intensity and maximum wavelength, at constant R. Now, the maxima are attained at 570 and 535 nm at pH 9.5 and 11.5, respectively; Wilkins, R.G., (1991) Kinetics and Mechanism of Reactions of Transition Metal Complexes, , 2 nd ed., VCH, Weinheim
  • The optimal conditions for observing the dependence of D with the pH, for [H+]≤laquo;K2, is R=10, for which D≈k-1. For the highest studied value of R=100, the relative contribution of k -1 to D is nearly 30 %. This fact is in agreement with the reported pH independence when the reaction was studied at R≥100. Thus, the line displayed in Figure 3 was calculated by fitting the data for R=10 and 30; Toma, H.E., Takasugi, M.S., (1983) J. Solution Chem., 12, p. 547
  • Toma, H.E., Takasugi, M.S., (1989) J. Solution Chem., 18, p. 575
  • Timpson, C.J., Bignozzi, C.A., Sullivan, B.P., Kober, E.M., Meyer, T.J., (1996) J. Phys. Chem., 100, p. 2915
  • Slep, L.D., Baraldo, L.M., Olabe, J.A., (1996) Inorg. Chem., 35, p. 6327
  • Waldhör, E., Kaim, W., Olabe, J.A., Slep, L.D., Fiedler, J., (1997) Inorg Chem., 36, p. 2969
  • Estrin, D.A., Hamra, O.Y., Paglieri, L., Slep, L.D., Olabe, J.A., (1996) Inorg. Chem., 35, p. 6832
  • Perissinotti, L.L., Estrin, D.A., Leitus, G., Doctorovich, F., (2006) J. Am. Chem. Soc., 128, p. 2512
  • Perissinotti, L.L., Leitus, G., Shimon, L., Estrin, D.A., Doctorovich, F., (2008) Inorg. Chem., 47, p. 4723
  • Arulsamy, N., Bohle, D.S., Butt, J.A., Irvine, G.J., Jordan, P.A., Sagan, E., (1999) J. Am. Chem. Soc., 121, p. 7115
  • Roncaroli, F., Ruggiero, M.E., Franco, D.W., Estiu, G.L., Olabe, J.A., (2002) Inorg. Chem., 41, p. 5760
  • Toma, H.E., Batista, A.A., Gray, H.B., (1982) J. Am. Chem. Soc., 104, p. 7509
  • Lever, A.B.P., (1985) Inorganic Electronic Spectroscopy, , 2 nd ed., Elsevier, Amsterdam
  • Olabe, J.A., Zerga, H.O., (1983) Inorg. Chem., 22, p. 4156
  • Morando, P.J., Borghi, E.B., Schteingart, L.M., Blesa, M.A., (1981) J. Chem. Soc. Dalton Trans., p. 435
  • Szacilowski, K., Stochel, G., Stasicka, Z., Kisch, H., (1997) New J. Chem., 21, p. 893
  • Szacilowski, K., Wanat, A., Barbieri, A., Wasielewska, E., Witko, M., Stochel, G., Stasicka, Z., (2002) New J. Chem., 26, p. 1495
  • Wong, P.S.Y., Hyun, J., Fukuto, J.M., Shirota, F.N., Demaster, E.G., Shoeman, D.W., Nagasawa, H.T., (1998) Biochemistry, 37, p. 5362
  • Dicks, A.P., Li, E., Munro, A., Swift, H.R., Williams, L.H., (1998) Can. J. Chem., 76, p. 789
  • Singh, S.P., Wishnok, J.S., Keshive, M., Deen, W.M., Tannenbaum, S.R., (1996) Proc. Natl. Acad. Sci. USA, 93, p. 14428
  • Arnelle, D.R., Stamler, J.S., (1995) Arch. Biochem. Biophys., 318, p. 279
  • Cheney, R.P., Simic, M.J., Hoffman, M.Z., Taub, I.A., Asmus, K.D., (1977) Inorg. Chem., 16, p. 2187
  • The assignment of the reaction in Equation (4) as a spontaneous decomposition of the adduct is supported by our complementary experiments in excess of NP, in which a very similar rate of [Fe(CN)5NO] 3- production has been observed; Das, T.N., Huie, R.E., Neta, P., Padmaja, S., (1999) J. Phys. Chem. A, 103, p. 5221
  • Perissinotti, L.L., Turjanski, A.G., Estrin, D.A., Doctorovich, F., (2005) J. Am. Chem. Soc., 127, p. 486
  • Formation of dominant NH3 and other reduction products (N 2O, NO, NH2OH) in the reactions of free nitrosothiolates with an excess of thiolate allowed proposing diverse structures for the intermediates and their further reactivity modes.[51] We rely on our calculations of the atomic charges for AH, A and a related nitrosothiolate (see Table SI6 in the Supporting Information), revealing that the most positively charged N atom in the Fe-NOS(H) moieties should be the expected site for the nucleophilic attack of HS-. The attack on the S atom of the NOSR group has also been considered for free and protonated nitrosothiolates. [50, 51a]; Miranda, K.M., (2005) Coord. Chem. Rev., 249, p. 433
  • Montenegro, A.C., Amorebieta, V.T., Slep, L.D., Martín, D.F., Roncaroli, F., Murgida, D.H., Bari, S.E., Olabe, J.A., (2009) Angew. Chem. Int. Ed., 4823, p. 4213. , the inner-sphere route involving [Fe(CN)5N(OH)(SH) 2]3- appears as more favorable for the formation of [Fe(CN)5NO]4- than the sequential electron transfer implied in the two-electron "outer-sphere" reduction of NP. The second reduction step is a costly process (the half-wave potential is negatively displaced ≈1 V compared to the first one-electron conversion from [Fe(CN)5NO]2- to [Fe(CN)5NO] 3-).[59]
  • Masek, J., Maslova, E., (1974) Coll. Czech. Chem. Commun., 39, p. 2141
  • Xu, N., Yi, J., Richter-Addo, G.B., (2010) Inorg. Chem., 49, p. 6253
  • Armor, J., (1973) Inorg. Chem., 12, p. 1959
  • Barley, M.H., Takeuchi, K.J., Meyer, T.J., (1986) J. Am. Chem. Soc., 108, p. 5876
  • Murphy, W.R., Takeuchi, K., Barley, M.H., Meyer, T.J., (1986) Inorg. Chem., 25, p. 1041
  • Barley, M.H., Rhodes, M.R., Meyer, T.J., (1987) Inorg. Chem., 26, p. 1746
  • Rhodes, M.R., Barley, M.H., Meyer, T.J., (1991) Inorg. Chem., 30, p. 629
  • Younathan, J.N., Wood, K.S., Meyer, T.J., (1992) Inorg. Chem., 31, p. 3280
  • Wasser, I.M., De Vries, S., Moënne-Loccoz, P., Schröder, I., Karlin, K.D., (2002) Chem. Rev., 102, p. 1201
  • Doyle, M.P., Surrender, M.N., Broene, R.D., Guy, J.K., (1988) J. Am. Chem. Soc., 110, p. 593
  • Schmidt, J., Kühr, H., Dorn, W.L., Kopf, J., (1974) Inorg. Nucl. Chem. Letters, 10, p. 55
  • Van Voorst, J.D.W., Hemmerich, P., (1966) J. Chem. Phys., 45, p. 3914
  • Glidewell, C., Johnson, I.L., (1987) Inorg. Chim. Acta, 132, p. 145
  • Wanner, M., Scheiring, T., Kaim, W., Slep, L.D., Baraldo, L.M., Olabe, J.A., Zalis, S., Baerends, E.J., (2001) Inorg. Chem., 40, p. 5704
  • Reginato, N., McCrory, C.T.C., Pervitsky, D., Li, L., (1999) J. Am. Chem. Soc., 121, p. 10217
  • Vanin, A.F., Serezhenkov, V.A., Mikoyan, V., Genkin, M.V., (1998) Nitric Oxide, 2, p. 224
  • Butler, A.R., Glidewell, C., Hyde, A.R., Walton, J.C., (1985) Polyhedron, 4, p. 797
  • Roncaroli, F., Van Eldik, R., Olabe, J.A., (2005) Inorg. Chem., 44, p. 2781
  • Schwane, J.D., Ashby, M.T., (2002) J. Am. Chem. Soc., 124, p. 6822
  • Toma, H.E., Malin, J.M., (1973) Inorg. Chem., 12, p. 1039
  • Toma, H.E., Malin, J.M., (1973) Inorg. Chem., 12, p. 2080
  • Johnson, M.D., Wilkins, R.G., (1984) Inorg. Chem., 23, p. 231
  • Bainbrigge, N., Butler, A.R., Görbitz, C.H., (1997) J. Chem. Soc. Perkin Trans. 2, p. 351
  • Roncaroli, F., Olabe, J.A., (2005) Inorg. Chem., 44, p. 4719. , in the reactions of cysteine with several more oxidizing Ru-nitrosyl complexes (namely, [Ru(bpy)2ClNO]2+), a two-electron reduction has also been observed, with N2O, cystine and [Ru(bpy) 2Cl(H2O)]+ as products. Note that cysteine generates only the one-electron reduction product with NP. In fact, NP is a poor oxidizing compound within the series of related nitrosonium-complexes. [45]
  • Videla, M., Roncaroli, F., Slep, L.D., Olabe, J.A., (2007) J. Am. Chem. Soc., 129, p. 278
  • Goldstein, S., Czapski, G., (1995) J. Am. Chem. Soc., 117, p. 12078. , references therein

Citas:

---------- APA ----------
Quiroga, S.L., Almaraz, A.E., Amorebieta, V.T., Perissinotti, L.L. & Olabe, J.A. (2011) . Addition and redox reactivity of hydrogen sulfides (H2S/HS -) with nitroprusside: New chemistry of nitrososulfide ligands. Chemistry - A European Journal, 17(15), 4145-4156.
http://dx.doi.org/10.1002/chem.201002322
---------- CHICAGO ----------
Quiroga, S.L., Almaraz, A.E., Amorebieta, V.T., Perissinotti, L.L., Olabe, J.A. "Addition and redox reactivity of hydrogen sulfides (H2S/HS -) with nitroprusside: New chemistry of nitrososulfide ligands" . Chemistry - A European Journal 17, no. 15 (2011) : 4145-4156.
http://dx.doi.org/10.1002/chem.201002322
---------- MLA ----------
Quiroga, S.L., Almaraz, A.E., Amorebieta, V.T., Perissinotti, L.L., Olabe, J.A. "Addition and redox reactivity of hydrogen sulfides (H2S/HS -) with nitroprusside: New chemistry of nitrososulfide ligands" . Chemistry - A European Journal, vol. 17, no. 15, 2011, pp. 4145-4156.
http://dx.doi.org/10.1002/chem.201002322
---------- VANCOUVER ----------
Quiroga, S.L., Almaraz, A.E., Amorebieta, V.T., Perissinotti, L.L., Olabe, J.A. Addition and redox reactivity of hydrogen sulfides (H2S/HS -) with nitroprusside: New chemistry of nitrososulfide ligands. Chem. Eur. J. 2011;17(15):4145-4156.
http://dx.doi.org/10.1002/chem.201002322