Artículo

Di Salvo, F.; Escola, N.; Scherlis, D.A.; Estrin, D.A.; Bondía, C.; Murgida, D.; Ramallo-López, J.M.; Requejo, F.G.; Shimon, L.; Doctorovich, F. "Electronic perturbation in a molecular nanowire of [IrCl 5(NO)]- units" (2007) Chemistry - A European Journal. 13(30):8428-8436
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The nitrosyl in [IrCl5(NO)]- is probably the most electrophilic known to date. This fact is reflected by its extremely high IR frequency in the solid state, electrochemical behavior, and remarkable reactivity in solution. PPh4[IrCl5(NO)] forms a crystal in which the [IrCl5(NO)]- anions are in a curious wire-like linear arrangement, in which the distance between the N - O moiety of one anion and the trans chloride of the upper one nearby is only 2.8 Å. For the same complex [IrCl5(NO)]- but with a different counterion, Na[IrCl5(NO)], the anions are stacked one over the other in a side-by-side arrangement. In this case the electronic distribution can be depicted as the closed-shell electronic structure IrIII-NO +, as expected for any d6 third-row transition metal complex. However, in PPh4[IrCl5(NO)] an unprecedented electronic perturbation takes place, probably due to NȮ-Cl- acceptor-donor interactions among a large number of [IrCl5(NO)] - units, favoring a different electronic distribution, namely the open-shell electronic structure IrIV-NȮ. This conclusion is based on XANES experimental evidence, which demonstrates that the formal oxidation state for iridium in PPh4-[IrCl5(NO)] is +4, as compared with + 3 in K[IrCl5(NO)], In agreement, solid-state DFT calculations show that the ground state for [IrCl5(NO)]- in the PPh4+ salt comprises an open-shell singlet with an electronic structure which encompasses half of the spin density mainly localized on a metal-centered orbital, and the other half on an NO-based orbital. The electronic perturbation could be seen as an electron promotion from a metal-chloride to a metal-NO orbital, due to the small HOMO-LUMO gap in PPh 4-[IrCl5(NO)]. This is probably induced by electrostatic interactions acting as a result of the closeness and wire-like spatial arrangement of the Ir metal centers, imposed by lattice forces due to π-π stacking interactions among the phenyl rings in PPh4+. Experimental and theoretical data indicate that in PPh4[IrCl 5(NO)] the Ir - N - O moiety is partially bent and tilted. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.

Registro:

Documento: Artículo
Título:Electronic perturbation in a molecular nanowire of [IrCl 5(NO)]- units
Autor:Di Salvo, F.; Escola, N.; Scherlis, D.A.; Estrin, D.A.; Bondía, C.; Murgida, D.; Ramallo-López, J.M.; Requejo, F.G.; Shimon, L.; Doctorovich, F.
Filiación:Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE-CONICET, Pabellón II, piso 3, C1428EHA Buenos Aires, Argentina
Max Volmer Laboratory of Biophysical Chemistry, Institute of Chemistry, Technical University of Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
INIFTA-IFLP (CONICHT), Departamento de Física, Universidad Nacional de la Plata, 1900 La Plata, Argentina
Department of Chemical Services, Weizmann Institute of Science, Rehovot 76100, Israel
Palabras clave:Electron transfer; Iridium, nanostructures; Nitrosyl; Valence isomerization; Electron promotion; Electrophils; Molecular nanowire; Nitrosyl; Phenyl rings; Electrochemical properties; Electronic equipment; Ground state; Nanowires; Negative ions; Perturbation techniques; Solid state device structures; Iridium compounds; iridium; nanowire; article; chemistry; Fourier analysis; oxidation reduction reaction; X ray crystallography; Crystallography, X-Ray; Fourier Analysis; Iridium; Nanowires; Oxidation-Reduction
Año:2007
Volumen:13
Número:30
Página de inicio:8428
Página de fin:8436
DOI: http://dx.doi.org/10.1002/chem.200601761
Título revista:Chemistry - A European Journal
Título revista abreviado:Chem. Eur. J.
ISSN:09476539
CODEN:CEUJE
CAS:iridium, 13967-67-4, 7439-88-5; Iridium, 7439-88-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09476539_v13_n30_p8428_DiSalvo

Referencias:

  • Stamler, J.S., Singel, D.J., Loscalzo, J., (1992) Science, 258, pp. 1898-1902
  • KBr pellet: 2006 cm-1; CH3CN solution: 1953 cm -1; E1/2 = + 0.96 V versus Ag/AgCl in 1 M HClO4; E 1/2 = -0.33 V versus ferrocene in butyronitrile; Sieger, M., Sarkar, B., Záliš, S., Fiedler, J., Escola, N., Doctorovich, F., Olabe, J.A., Kaim, W., (2004) Dalton Trans, 12, pp. 1797-1800
  • Doctorovich, F., Di Salvo, F., Escola, N., Trápani, C., Shimon, L., (2005) Organometallics, 24, pp. 4707-4709
  • Perissinotti, L.L., Estrin, D.A., Leitus, G., Doctorovich, F., (2006) J. Am. Chem. Soc, 128, pp. 2512-2513
  • J. H. Enemark, R. D. Feltham, Coord. Chem. Rev. 1974, 13, 339-406. In the Enemark-Felthan notation a mononitrosyl complex is described as (MNO). were n is the total number of electrons in the metal d and NO π* orbitals; Bottomley, F.J., (1975) J. Chem. Soc. Dalton Trans, 23, pp. 2538-2541
  • Feltham, R.D., Enemark, J.H., (1981) Topics in Inorganic and Organometallic Stereochemistry, , Ed, O. L. Geoffrey, Wiley, New York
  • Evangelio, E., Ruiz-Molina, D., (2005) Eur. J. Inorg. Chem, pp. 2957-2971
  • Caneschi, A., Dei, A., (1998) Angew. Chem. Int. Ed, 37, pp. 3005-3007
  • PPh4+: tetraphenylphosphonium; AsPh 4+: tetraphenylarsonium; Yang, P., Poeppelmeier, K., (2006) Inorg. Chem, 45, pp. 7509-7510
  • Wang, S., Zuo, J.-L., Gao, S., Song, Y., Zhou, H.-C., Zhang, Y.-Z., You, Y.-Z., (2004) J. Am. Chem. Soc, 126, pp. 8900-8901. , For example, see
  • Paul, P.K.C., (2002) Cryst. Eng, 5, pp. 3-8
  • Li, X.Y.Z.-H., Wang, W., Fan, K., Xu, W., Hua, Z., (2004) Chem. Phys. Lett, 397, pp. 56-61
  • Schieber, W., Vinek, H., Jentys, A., (2001) Catal. Lett, 73, pp. 67-72
  • Choy, J.H., Kim, D.K., Demazeau, G., Jung, D.Y., (1994) J. Phys. Chem, 98, pp. 6258-6262
  • Choy, J.H., Kim, D.K., Hwang, S.H., Demazeau, G., Jung, D.Y., (1995) J. Am. Chem. Soc, 117, pp. 8557-8566
  • Pauporté, T., Aberdam, D., Hazemann, J.L., Faure, R., Durand, R., (1999) J. Electroanal. Chem, 465, pp. 88-95
  • Shulman, R.G., Yafet, Y., Eisenberger, P., Blumberg, W.E., (1976) Proc. Natl. Acad. Sci. USA, 73, pp. 1384-1388
  • Ramallo-López, J.M., Lede, E.J., Requejo, F.G., Rodriguez, J.A., Kim, J.-Y., Rosas-Salas, R., Domínguez, J.M., (2004) J. Phys. Chem. B, 108, pp. 20005-20010
  • Yoshida, H., Nonoyama, S., Yazawa, Y., Hattori, T., (2005) Phys. Scripta, T115, pp. 813-815
  • DuBois, J.L., Mukherjee, P., Stack, T.D.P., Hedman, B., Solomon, E.I., Hodgson, K.O., (2000) J. Am. Chem. Soc, 122, pp. 5775-5787
  • Westre, T.E., Kennepohl, P., DeWitt, J.G., Hedman, B., Hodgson, K.O., Solomon, E.I., (1997) J. Am. Chem. Soc, 119, pp. 6297-6314
  • Stern, E.A., Kim, K., (1981) Phys. Rev. B, 23, pp. 3781-3787
  • Lytle, F.W., van der Laan, G., Greegor, R.B., Larson, E.M., Violet, C.E., Wong, J., (1990) Phys. Rev. B, 41, pp. 8955-8963
  • Singh, P., Sarkar, B., Sieger, M., Niemeyer, M., Fiedler, J., Zališ, S., Kaim, W., (2006) Inorg. Chem, 45, pp. 4602-4609
  • Andrews, L., Citra, A., (2002) Chem. Rev, 102, pp. 885-911
  • Benko, B., Yu, N.T., (1983) Proc. Natl. Acad. Sci. USA, 80, pp. 7042-7046
  • Hu, S., Kincaid, J.R., (1991) J. Am. Chem. Soc, 113, pp. 2843-2850
  • Castellano, E.E., Piro, O.E., Rivero, B.E., (1977) Acta Crystallogr. B, 33, pp. 1728-1732
  • Garcia Serres, R., Grapperhaus, C.A., Bothe, E., Bill, E., Weyher-müller, T., Neese, F., Wieghardt, K., (2004) J. Am. Chem. Soc, 126, pp. 5138-5153
  • Spiro, T.G., Kozlowski, P.M., (2001) Acc. Chem. Res, 34, pp. 137-144
  • Rehr, J.J., Ankudinov, A., Zabinsky, S.I., (1998) Catal. Today, 39, pp. 263-269
  • Teo, B.K., (1981) J. Am. Chem. Soc, 103, pp. 3990-4001
  • Stern, E., Theory of EXAFS (1988) X-ray Absorption Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, pp. 34-36. , Eds, D. C. Konisberger and R. Prins, John Wiley and Sons. New York
  • Zabinski, S.I., Rehr, J.J., Ankudinov, A., Albers, R.C., Eller, M.J., (1995) Phys. Rev. B, 52, pp. 2995-3009
  • Ravel, B., Newville, M., (2005) J. Synchrotron Radiat, 12, pp. 537-541
  • Cromer, D.T., Liberman, D., (1970) J. Chem. Phys, 53, pp. 1891-1898
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.7, Gaussian Inc, Pittsburgh, PA, 1998; Becke, A.D., (1993) J. Chem. Phys, 98, pp. 5648-5652
  • Lee, C., Yang, W., Parr, R., (1998) Phys. Rev. B, 37, pp. 785-789
  • Becke, A.D., (1988) Phys. Rev. A, 38, pp. 3098-3100
  • Godbout, N., Salahub, D.R., Andzelm, J., Wimmer, E., (1992) Can. J. Chem, 70, pp. 560-571
  • Hay, P.J., Wadt, W.R., (1985) J. Chem. Phys, 82, pp. 270-283
  • Wadt, W.R., (1985) J. Chem. Phys, 82, pp. 299-310
  • Reed, A.E., Curtis, L.A., Weinhold, F., (1988) Chem. Rev, 88, pp. 899-926
  • Hall, G.G., Smith, C.M., (1984) Int. J. Quantum Chem, 25, pp. 881-890
  • Smith, C.M., Hall, G.G., (1986) Theor. Chim. Acta, 69, pp. 63-69
  • Baroni, S., Dal Corso, A., de Gironcoli, S., Giannozzi, P., Cavazzoni, C., Ballabio, G., Scandolo, S., Kokalj, A., Quantum ESPRESSO, , http://www.quantum- espresso.org
  • Vanderbilt, D., (1990) Phys. Rev. B, 41, pp. 7892-7895
  • Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett, 77, pp. 3865-3868

Citas:

---------- APA ----------
Di Salvo, F., Escola, N., Scherlis, D.A., Estrin, D.A., Bondía, C., Murgida, D., Ramallo-López, J.M.,..., Doctorovich, F. (2007) . Electronic perturbation in a molecular nanowire of [IrCl 5(NO)]- units. Chemistry - A European Journal, 13(30), 8428-8436.
http://dx.doi.org/10.1002/chem.200601761
---------- CHICAGO ----------
Di Salvo, F., Escola, N., Scherlis, D.A., Estrin, D.A., Bondía, C., Murgida, D., et al. "Electronic perturbation in a molecular nanowire of [IrCl 5(NO)]- units" . Chemistry - A European Journal 13, no. 30 (2007) : 8428-8436.
http://dx.doi.org/10.1002/chem.200601761
---------- MLA ----------
Di Salvo, F., Escola, N., Scherlis, D.A., Estrin, D.A., Bondía, C., Murgida, D., et al. "Electronic perturbation in a molecular nanowire of [IrCl 5(NO)]- units" . Chemistry - A European Journal, vol. 13, no. 30, 2007, pp. 8428-8436.
http://dx.doi.org/10.1002/chem.200601761
---------- VANCOUVER ----------
Di Salvo, F., Escola, N., Scherlis, D.A., Estrin, D.A., Bondía, C., Murgida, D., et al. Electronic perturbation in a molecular nanowire of [IrCl 5(NO)]- units. Chem. Eur. J. 2007;13(30):8428-8436.
http://dx.doi.org/10.1002/chem.200601761